
 John Strawn
 Center for Computer Research in Music and
 Acoustics

 Stanford University
 Stanford, California 94305

 Approximation and
 Syntactic Analysis
 of Amplitude and
 Frequency
 Functions for
 Digital Sound
 Synthesis

 1. Introduction

 Of the various models proposed and used for ana-
 lyzing and synthesizing musical sound, additive
 synthesis is one of the oldest and best understood.
 In recent years, time-variant Fourier methods im-
 plemented as computer programs have made it
 possible to analyze digitally a large variety of tones
 from traditional musical instruments. Such re-
 search has led to a better understanding of the
 physical and perceptual nature of musical sound as
 well as improvements in techniques for digital
 sound synthesis.

 The heterodyne filter (Moorer 1973) and the
 phase vocoder (Portnoff 1976; Moorer 1978) provide
 time-varying amplitude and frequency functions for
 each harmonic of a tone being analyzed. This
 quickly leads to an almost unmanageable increase
 in the amount of data used to represent the original
 tone. The question of reducing the amount of data
 without sacrificing tone quality is thus of potential
 interest to hardware and software designers as well
 as musicians and psychoacousticians.

 Copyright @ 1980 John Strawn.

 One approach to data reduction has involved the
 use of line-segment approximations (Risset 1969;
 Beauchamp 1969; Grey 1975), in which an ampli-
 tude or frequency envelope is represented by a
 relatively small number of line segments. Depend-
 ing on the degree of reduction, tones resynthesized
 using line-segment approximations often sound as
 though they were produced by the original instru-
 mental source and in many cases cannot be dis-
 tinguished perceptually from the original tone.

 There is still no definitive answer to the question
 of how much data can be omitted without changing
 the tone significantly. The ultimate goal would be
 to use the smallest possible amount of data to pro-
 duce a tone that would be perceptually indis-
 tinguishable from the (digital) recording of the
 original tone (Strong and Clark 1967). Grey was un-
 able to explore the question of the degree of
 acceptable data reduction because at that time only
 analog tape recordings could be digitized for analy-
 sis by computer at the Center for Computer Re-
 search in Music and Acoustics (CCRMA). Thus
 the resynthesized tone could be discriminated from
 the original tone merely by the absence of tape hiss.
 Using the digital recording facility (Moorer 1977) it
 is now possible to record traditional musical instru-
 ments at CCRMA in digital form.

 An important problem in data reduction con-
 cerns the selection of features to be retained in the

 Computer Music Journal, Vol. 4, No. 3, Fall 1980,

 Strawn 3

This content downloaded from 132.174.254.3 on Sun, 18 Feb 2018 16:34:47 UTC
All use subject to http://about.jstor.org/terms

 Fig. 1. (a) The amplitude-
 versus time function of the
 fifth harmonic of a single
 trumpet tone, analyzed by
 the heterodyne filter and
 normalized to a maximum

 amplitude of 1.0. The y-
 axis represents amplitude

 on an arbitrary linear
 scale. This function has
 been chosen as an interest-

 ing test case for investigat-
 ing methods of approxima-
 tion because of the large
 amount of noise in the
 trace and the presence of

 blips in the attack. Pre-
 sumably such blips play
 an important role in the
 timbre of the note from
 which this function was
 derived. (b) The frequency-
 versus-time function for
 the same harmonic of the

 same tone as in (a). Both
 functions contain 230
 points.

 1

 0.5

 (a)

 0 0.25 ~ 0.5

 Time

 Z 1500

 a 1250

 0 0.25 0.5

 Time

 simplified representation of the amplitude and fre-
 quency waveforms. In this article, feature will be
 used in a very narrow sense to mean components of
 functions that are presumably important percep-
 tually. An example of this would be the so-called
 blips which typically occur in brass tones, such as
 those shown in Fig. 1 (cf. Strong and Clark 1967;
 Moorer, Grey, and Strawn 1978). The central hy-
 pothesis of the work discussed here might be
 formulated as follows: it is possible to reduce time-
 varying amplitude and frequency functions derived
 from traditional instrument tones to some mini-

 mum number of line segments such that a digitally
 resynthesized tone using such line segments is per-.
 ceptually indistinguishable (according to some
 suitable measure) from a digital recording of the
 original tone. Reducing the number of line seg-
 ments further, that is, omitting some features,
 results in tones which can be distinguished from
 the original.

 Various manual and automatic algorithms for

 generating line-segment approximations were used
 in previous research. In the first half of this paper
 we will review several algorithms from the litera-
 ture on pattern recognition which have been
 developed for analyzing such diverse data as coast-
 lines on maps (Davis 1977), electrocardiograms
 (Pavlidis and Horowitz 1974), chromosomes (Fu
 1974), outlines of human heads (Kelly 1971), and
 gasoline blending curves (Stone 1961), but which
 have not yet been applied to musical problems.
 After discussing the difficulties inherent in such
 "low-level" techniques for the problem at hand,
 preliminary results from a syntactic, hierarchical
 scheme for analyzing amplitude and frequency
 functions will be presented. Since Grey concluded
 that it was necessary to retain time-varying infor-
 mation for both frequency and amplitude functions
 (1975), a method for analyzing both will be
 discussed.

 The algorithms which will be outlined below
 draw extensively from the literature on approxima-

 4 Computer Music Journal

This content downloaded from 132.174.254.3 on Sun, 18 Feb 2018 16:34:47 UTC
All use subject to http://about.jstor.org/terms

 tion theory and pattern recognition. Considerations
 of time and space prevent a review of these topics
 here, except the mention of some standard texts
 (Davis 1963; Rosenfeld 1969; Duda and Hart 1973;
 Fu 1974; Tou and Gonzales 1974) which have
 proved useful.

 The work presented in this article forms part of a
 larger research project investigating the role of tim-
 bre in the context of a musical phrase. For the
 purposes of this report, only individual tones from
 traditional orchestral wind instruments will be pre-
 sented. The trumpet tone shown in Fig. 1 was
 analyzed using the heterodyne filter, but the phase
 vocoder will be used exclusively in future work. No
 matter which of the two analysis techniques are ap-
 plied, the issues of approximation remain the same.

 2. Line Segments

 Formally speaking, the various approximations will
 be treated as first-degree splines. The following def-
 inition has been adapted from that of Cox (1971).
 Let f(t) be a sampled function, where t = {to, t1, t2,
 ... t(n-i), t,} is a sequence of real numbers repre-
 senting time defined at t = qT; T is some sampling
 period and q = 0, 1, 2, ... n. Then a first-degree
 spline approximation a(t) to f(t) is given by

 ai(t) = gi + hi(t - tao), t e {tao, tai} a(t) = a2(t) = g2 + h2(t - tal), tE {tal, ta2} (1)

 am(t) = gm + hm(t - ta(m-l)), t E {ta(m-1), tam}

 where m < n, to = tao and tn = tam. a(t) is also re-
 quired to be continuous across tao : t < tam, with
 continuity defined as

 ai(tai) = ai+i(tai). (2)

 Any a1 is obviously continuous across t E {ta(-),, tai I

 Furthermore, one important restriction has been
 adopted and concerns the endpoints of the line seg-
 ments used to approximate a function. Each
 endpoint is required to be the same as some data
 point in the original waveform (Fig. 2). In terms of
 the definition given above:

 Fig. 2. The solid line repre-
 sents a first-degree spline
 function a(t) as defined in
 Eq. (1), with m = 4. The
 function f(t) being approxi-
 mated is shown as a dot-

 ted line. Each breakpoint
 of ai is the same as a point
 in the original function, as
 specified in Eq. (3).

 * ??

 * I
 Ir

 *r S
 *r S

 *, 2
 *

 0 5

 * S

 For every i E {0 i < m} there exists j E {0 /
 SnI} such that

 tai = tj and a(tai) = f(ti). (3)
 The reasons for this restriction will become clear

 only at the very end of this paper. In the mean-
 time, it will merely be mentioned again when
 appropriate.

 Since the functions being approximated exist
 only in sampled form, such requirements as the ex-
 istence of the n th-order derivative are satisfied by
 definition (see also Pavlidis and Maika 1974).

 There is a considerable body of literature on the
 use of higher-order approximations, for example cu-
 bic splines. Line segments, however, have the
 advantage of being conceptually simple. The effect
 of changing the slope or intercept of a straight line
 is easy to conceptualize, but it is more difficult to
 correlate changes in higher-order polynomial coeffi-
 cients with changes in the appearance of the
 approximation to some waveform. However, just
 such a one-to-one correspondence is essential in
 the feature-oriented work presented here. Cubic
 splines are also more complicated in that a change
 in any a(ti) will change all of the coefficients across
 the entire approximation since the slopes at each ti

 Strawn 5

This content downloaded from 132.174.254.3 on Sun, 18 Feb 2018 16:34:47 UTC
All use subject to http://about.jstor.org/terms

 are required to be continuous. This criterion of con-
 tinuity at a breakpoint is in fact ignored when
 working with line segments. Finally, the line-seg-
 ment approach is currently implemented in most
 general-purpose music compilers as well as in most
 hardware devices for digital sound synthesis.

 3. Error Norms

 The most common measure of error is the square of
 the vertical distance (i.e., the distance parallel to
 the y-axis) between a function and an approxima-
 tion to it. Duda and Hart (1973, p. 332) discuss a
 variation of this, in which the error is the perpen-
 dicular distance from a point f(t) of the original
 function to the approximating line; Dudani and
 Luk (1977) present an algorithm for fitting a line to
 a set of points using this error norm. But according
 to Moorer (1980), experience has shown that using
 this error criterion does not improve the results of
 approximation for the class of waveforms under dis-
 cussion here. Since it involves a considerable

 increase in computation time, this variation has
 not been tested in the work to be presented below.

 Before various methods for approximating func-
 tions can be examined, three error norms need to
 be defined.

 3.1 Maximum Error

 The maximum error E. is given by

 E0 = max [f(t) - a(t)]2, (4)
 t

 with a(t) defined in Eq. (1). This is sometimes
 called the uniform error norm (Davis 1963, p. 133).

 3.2 Sum-of-Squared Error

 Pavlidis (1973) also calls this norm the integral
 square error:

 tn

 E. = [f(t)- a(t)]2. (5)
 t=to

 3.3 Mean Squared Error

 The mean squared error across each a1 is given by

 I [f(t)- a(t)]2
 t = ta(i-l)

 Em = . (6) tai = ta(i-1)

 The Em 'norm is more tolerant of error across long
 line segments than the E, and E. norms.

 4. Algorithms for Line-Segment
 Approximation

 There are two basic approaches to solving the prob-
 lem of approximation using splines. In the first, the
 number of segments is specified in advance and the
 algorithm is required to minimize some measure of
 error. The number of splines is changed in the other
 method until the measure of error lies as close as

 possible to, but still under, some predetermined
 threshold.

 4.1 Minimizing Error: ADJUST

 One method for minimizing error with a given
 number of line segments is presented by Pavlidis
 (1973). Since two typographical errors occurred in
 Eq. (3) of Pavlidis's article, (which should read Pj =
 ti() - Mk), and since it forms an integral part of the
 procedures discussed in the next section, Pavlidis's
 algorithm will be discussed in some detail.

 The algorithm, called ADJUST in the rest of
 this paper, is given in Fig. 3. For each iteration, the
 endpoints of successive segments (first the odd-
 numbered segments, then the even-numbered ones)
 are moved by some number M, always set to 1 in
 the work discussed in this paper; larger values of M
 could be specified for the first few iterations if the
 initial approximation were thought to be signifi-
 cantly different from the expected final solution. If
 the error of the approximation using the trial break-
 point is less than the original error, then the trial

 6 Computer Music Journal

This content downloaded from 132.174.254.3 on Sun, 18 Feb 2018 16:34:47 UTC
All use subject to http://about.jstor.org/terms

 Fig. 3. The algorithm AD-
 JUST, modified from
 Pavlidis's algorithm (1973),
 in a quasi-ALGOL nota-
 tion. The algorithm ac-
 cepts as input some func-
 tion to be approximated,
 some initial approxima-

 tion a(t) in the form given
 in Eq. (1), M (the number
 of points to move a break-
 point for each trial), and
 iterationLimit (the max-
 imum number of iterations
 allowed). When the al-
 gorithm has finished, ei-

 ther iterationLimit has

 been exceeded or the ap-
 proximation has been ad-
 justed so that any further
 changes in the breakpoints
 will cause some (local) er-
 ror to increase. Error in

 this algorithm refers to one

 of the three error norms de-
 fined in Section 3 of the
 text, although Pavlidis
 originally designed this al-

 gorithm for the E. and En
 norms.

 INTEGER iterationCount, start, stop, i;
 BOOLEAN odd, breakPointChanged;

 FOR iterationCount -- 1 STEP 1 UNTIL iterationLimit DO

 BEGIN "iteration loop"
 breakPointChanged <- FALSE;
 FOR odd +-- TRUE, FALSE DO

 BEGIN "odd/even loop"
 IF odd THEN start <-- 1 ELSE start -- 2;
 FOR i -- start STEP 2 UNTIL n DO

 BEGIN "step through segments"
 7 1 <- ta (iC- 1);

 72 <-- tai; COMMENT T,, 72 are the breakpoints for segment aj,
 T3 <- ta(i+1); COMMENT rT2 73 are the breakpoints for segment ai+,;
 e< -- error across (T7, 72);
 ei+, I- error across (72, 73);
 IF ei 4 ei+, THEN

 BEGIN "try moving point"

 IF ei > ei+, THEN 72' *- 72-M ELSE T2' 7-- +M;
 ei' -- error across (T,, 72);

 ei+,' <-- error across (72r', 3);

 IF MAXIMUM (e1, e+,1) > iMAXIMUM (e,', e,+,') THEN BEGIN "accept moved point"
 ta i -- 72';

 breakPointChanged<-TRUE;
 END "accept moved point";

 END "try moving point";
 END "step through segments";

 END "odd/even loop";
 IF breakPointChanged = FALSE THEN DONE;

 END "iteration loop";

 breakpoint replaces the original breakpoint.
 Pavlidis presents a proof to show that the algorithm
 will converge in a finite number of steps, and (more
 importantly) that no cycling is possible. It must be
 emphasized that this algorithm is useful for finding
 local minima, not some globally optimal solution.
 Pavlidis states that the maximum error norm is to
 be preferred for most applications, although the
 sum-of-squared error and mean squared error
 norms have also been used successfully in the work
 presented here.

 A note on the implementation of ADJUST: if
 both endpoints of some a1 are points from the func-
 tion being approximated, then ej, for example, only

 needs to be calculated using points , +1 through

 72-1, because the points Tl and 72 cannot contribute to the error. This represents a slight improvement
 over Pavlidis's algorithm, which points out this
 computational saving only for the beginning
 endpoint.

 The results of applying ADJUST to two test cases
 are given in Fig. 4 and Table 1. The "worst" case (in
 terms of computational time) is given if the break-
 points for the original approximation are all
 gathered at one end of the function, in which case
 ADJUST must spread the points out across the
 function in the process of finding the optimal
 approximation.

 Strawn 7

This content downloaded from 132.174.254.3 on Sun, 18 Feb 2018 16:34:47 UTC
All use subject to http://about.jstor.org/terms

 Fig. 4. Results of applying
 the algorithm ADJUST
 (given in Fig. 3) to the ap-
 proximation of two test
 cases; further data is given
 in Table 1. The En norm
 was used in all of the cases
 illustrated here.

 (a) This test case consists
 of two diagonal lines, each
 corresponding to 24 units
 on the x-axis, separated by
 a horizontal line one unit

 in length. The original
 smooth diagonal lines
 have been modified by

 adding quasi-random vari-
 ations, the amplitude of
 which depends on the
 y-value of the original line.
 (b) Arbitrary, initial place-
 ment of four line seg-
 ments approximating test
 case (a).
 (c) Approximation to test
 case (a), with four line seg-
 ments, after algorithm AD-
 JUST has reached a
 solution.

 (d) As in (c), but with 11
 line segments. Perhaps if
 the breakpoints were dis-
 tributed more evenly, the
 error could be reduced fur-

 ther and the blip on the
 left-hand side might be
 avoided. But ADJUST con-
 verges onto a locally opti-
 mal solution, which is not
 necessarily optimal
 globally.
 (e) One-half of a sine
 wave, again spread across
 49 units of the x-axis and
 with noise added as in (a).
 (f) Approximation to (e),
 with four line segments,
 after ADJUST has reached
 a solution.

 (g) As in (f), with 11 line
 segments.

 (a)

 0 25 50

 (b)

 0 25 50

 (c)

 0 25 50

 (d)

 0 25 50

 (e)

 0 25 50

 0 25 50

 (g)

 0 25 50

 8 Computer Music Journal

This content downloaded from 132.174.254.3 on Sun, 18 Feb 2018 16:34:47 UTC
All use subject to http://about.jstor.org/terms

 Table 1. Performance of the algorithm ADJUST for
 the test cases shown in Fig. 4
 Corresponding

 Illustration Error (E,) Number
 in Fig. 4 Initial Final of Iterations
 b, c 122.9 43.21 4
 d 43.2 25.5 2
 f 0.45 0.07 11
 g 0.0205 0.0190 6

 NOTE: Initial error refers to the error for the initial, arbitrary
 placement of the approximating line segments. E, is calculated
 across the entire test case. Note that the function in Figs. 4(a)-
 4(d) varies from 0 to 24, whereas the half-period of the sinusoid
 in Figs. 4(f) and 4(g) does not exceed 1.0.

 4.2 Initial Segmentation

 Three algorithms (and a variant of one of them) for
 approximating a function with line segments will
 be discussed. The first two represent solutions to
 the problem, discussed above, of finding an approx-
 imation such that the error does not exceed some

 threshold, with no a priori restrictions on the final
 number of segments.

 One widely used method, in which each line
 segment provides the least mean squared error
 approximation to all or part of a function, is not
 considered here because of the restriction of Eq. (3).
 Another interesting approach (Stone 1961; Phillips
 1968; Pavlidis 1971) will be omitted here for the
 same reason.

 4.2.1 Thresholding Sum-of-Squared Error

 The sum-of-squared error norm was defined in Eq.
 (5). The method, as suggested by Pavlidis (1973), is
 quite simple. The endpoint for the approximating
 segment is incremented until the sum-of-squared
 error exceeds some threshold. The endpoint is then
 decremented by 1, a segment is established, and the
 process is repeated using the endpoint just found as
 the new initial point.

 4.2.2 Split-and-Merge

 Pavlidis and Horowitz (1974) developed a highly
 efficient algorithm, presented in Fig. 5. In the ver-

 sion to be discussed here, the error across each
 segment of the approximating function must not
 exceed some threshold. The initial line segments
 are first split into smaller line segments until the
 threshold requirement is satisfied (or the line seg-
 ment consists of only two points). Neighboring line
 segments are then joined when possible by
 MERGE, that is when joining them will not violate
 the same threshold conditions. Finally, ADJUST is
 applied to the segmentation. The algorithm repeats
 until no changes are made to the breakpoints dur-
 ing an iteration.
 In its original formulation, the split-and-merge

 algorithm returned to the SPLIT procedure ("start:"
 in Fig. 5[a]) after every iteration. But given the re-
 striction of Eq. (3), SPLIT only needs to be invoked
 once (during the first pass) for the following reason.
 After SPLIT, the error across each segment is less
 than or equal to the threshold. MERGE likewise
 can only result in segments with error less than or
 equal to the threshold. For 72' in ADJUST (cf. Fig. 3)
 to be accepted as a breakpoint, e,' and ei,,' must be
 less than or equal to ei and e,+, respectively. But
 when ADJUST is invoked after MERGE, e, and e,+l
 must be less than or equal to the threshold. Thus
 MERGE and ADJUST cannot result in segments
 with an error greater than the threshold, so that
 there is no need to invoke SPLIT again.

 4.2.3 "Case 2"

 There is another version of the algorithm, called
 "Case 2" by Pavlidis and Horowitz (1974), in which
 the error across all of the segments must not ex-
 ceed some threshold. For the maximum error norm,
 both cases are identical. When using the sum-of-
 squared error norm, however, the sum of the
 squared error across the entire function is exam-
 ined. Modifications to the split-and-merge al-
 gorithm are necessary. This variation has been
 tested but will not be discussed here for reasons to
 be summarized in Section 4.3.

 4.2.4 Curvature

 There is yet another method, based on a measure of
 curvature (Symons 1968; Shirai 1973; 1978). In a
 study of human visual perception, Attneave (1954)

 Strawn 9

This content downloaded from 132.174.254.3 on Sun, 18 Feb 2018 16:34:47 UTC
All use subject to http://about.jstor.org/terms

 Fig. 5. The split-and-merge
 algorithm in a quasi-AL-
 GOL notation, after
 Pavlidis and Horowitz

 (1974). Procedure ADJUST

 is presented in Fig. 3. (a)
 Outline of the algorithm.
 (b) Procedure SPLIT. As-
 sume that SPLIT has been

 initialized so that ta, = tan,

 that is, there is initially
 one line segment which
 covers the entire function
 f(t). (c) Procedure MERGE.

 a) Split-and-Merge Algorithm
 start: breakPointChanged <-- FALSE;

 invoke SPLIT

 loop 1: breakPointChanged <- FALSE;
 invoke MERGE

 invoke one iteration of ADJUST
 IF (breakPoint changed by ADJUST or MERGE) THEN GOTO loop 1, ELSE DONE;

 b) Procedure "SPLIT"
 i<-- 1
 numberSegments -- 1;
 loop2:

 73 <- tal; COMMENT 7r, r7 are the breakpoints for segment a1;
 ej <-- error across (7I, 7T);
 IF ej > threshold THEN

 BEGIN "split ai"

 IF maximum squared error across (r,, 7:) occurs only once THEN T ~-- point halfway between (r,, T73)
 ESLE T2 -- point halfway between (first) two error maxima across (7,, 7s);

 redefine segment a1 to extend from 7r to 7z
 after a1, insert a new segment to extend from 72 to T7
 renumber segments
 numberSegments <- numberSegments+ 1;
 breakPointChanged <- TRUE;
 END "split ai"

 ELSE

 BEGIN

 COMMENT note that a, may be split more than once if necessary;
 i --i + 1
 IF i > numberSegments THEN DONE "SPLIT";
 END;

 GOTO loop2;

 c) Procedure "MERGE"
 i -- 1;

 loop3:
 IF numberSegments = 1 THEN DONE "MERGE";

 73 -- ta(i+l); COMMENT segments a, and a+l, lie between r7 and 73;
 ei -- error across (T7, 73);
 IF ej < threshold THEN

 BEGIN

 redefine segment a, to extend from T7 to 7n (i.e. remove tai as a breakpoint)
 renumber segments
 breakPointChanged -- TRUE;
 numberSegments <- numberSegments - 1;
 END

 ELSE
 BEGIN

 i --i+1;
 IF i > numberSegments THEN DONE "MERGE";
 END;

 GOTO loop 3;

 10 Computer Music Journal

This content downloaded from 132.174.254.3 on Sun, 18 Feb 2018 16:34:47 UTC
All use subject to http://about.jstor.org/terms

 Fig. 6. (a) Curvature (in de-
 grees) of the waveform
 shown in Fig. 1, with M
 (see text) set to correspond
 to approximately 12.5
 msec. (b) As in (a), but

 with M =z25 msec. (c) As
 in (a), with M = 50 msec.
 In (a), even small varia-
 tions in the original func-
 tion result in large values
 of curvature. M in (c) is so

 large that the points of
 high curvature at t - 0.1
 sec and t 0.15 sec are
 missed.

 5 (a)

 500

 0-
 0 0.25 0.5

 0 0.25 0.5

 0 0.25 0.5

 found that the points on a curved line where its di-
 rection changes most rapidly were extracted by test
 subjects as endpoints for drawing an outline of the
 curve. Conversely, he found that an illustration can
 be satisfactorily reproduced by drawing straight
 lines between points of high curvature; the cat-
 drawing in his article has been widely reprinted
 (e.g., Duda and Hart 1973, p. 339).
 Shirai defines curvature at a point P along a digi-
 tized function as the angle a between RP and PQ,
 where Q and R are points of the function a constant

 number of samples (called M by Shirai) away from
 P. In this method, then, the curvature at each point
 of the function to be approximated is calculated
 (Fig. 6), and breakpoints are assigned at points of
 high curvature. If RPQ is a straight line, a = 00; for
 a highly acute angle RPQ a approaches 1800.
 It is important to choose an appropriate value for

 M. Too small a value will result in distortions in

 the approximation because features which are too
 small will cause large variations in curvature and
 thus be assigned breakpoints. If M is too large, sig-

 Strawn 11

This content downloaded from 132.174.254.3 on Sun, 18 Feb 2018 16:34:47 UTC
All use subject to http://about.jstor.org/terms

 Fig. 7. (a) Approximation
 to the waveform of Fig. 1,
 derived from the curvature
 shown in Fig. 6(b), with
 the threshold for establish-
 ing a breakpoint set at 60'.

 The breakpoint which pre-
 sumably should occur near
 t = 0.25 sec is missed. (b)
 As in (a), with a threshold
 of 300. The breakpoint
 omitted in (a) is included,

 along with a large amount
 of presumably extraneous
 points. The approximation
 in (a) comprises 32 seg-
 ments; (b) has 77, both
 with a long segment for

 the initial silence. Choos-

 ing an appropriate thresh-
 old would be just as hard,
 if not harder, for the plots
 of curvature in Figs. 6(a)
 and 6(c).

 1 (a)

 0.5

 0 0.25 0.5

 Time

 1--
 1 (b)

 0.5 -

 0-
 0 0.25 0.5

 Time

 nificant points of high curvature will be missed (cf.
 Fig. 7).

 Shirai suggests a thresholding scheme for assign-
 ing breakpoints according to curvature. This
 method undoubtedly works for the cases cited by
 Shirai, in which fairly smooth lines change direc-
 tion only occasionally. But as is shown in Fig. 7, it
 seems difficult to find a single threshold which pro-
 vides a useful approximation for the kinds of
 functions under consideration here. This method
 has also been found to be sensitive to the absolute
 values used to represent f(t), especially for small M.
 Another problem occurs because the curvature near
 a probable breakpoint often does not reach a peak,
 but rather stays at a plateau; this happens, for ex-

 ample, at t - 0.1 sec in Fig. 6(b). Obviously only one point needs to be assigned-but which one? I
 have spent considerable time and effort in an at-
 tempt to derive heuristics for selecting only
 appropriate peaks of curvature, with no notable
 success to date. Perhaps a varying curvature thresh-

 old could be applied, but this has not yet been
 explored.

 4.3 Summary

 Three different analyses using the split-and-merge
 algorithm are presented in Fig. 8. As one would ex-
 pect, the approximation using a very small thresh-
 old captures many details; as the threshold is in-
 creased, some details are lost and the overall shape
 of the waveform is emphasized.

 Similar analyses have been conducted using the
 "Case 2" form of the split-and-merge algorithm as
 well as the thresholding algorithm of Section 4.2.1.
 The mean squared error and maximum squared er-
 ror norms have likewise been explored. In general,
 using any combination of these algorithms and er-
 ror criteria it is possible to produce results similar
 to those shown in Fig. 8. Each combination admit-
 tedly reacts to changes in the threshold in a unique

 12 Computer Music Journal

This content downloaded from 132.174.254.3 on Sun, 18 Feb 2018 16:34:47 UTC
All use subject to http://about.jstor.org/terms

 Fig. 8. Results of the split-
 and-merge algorithm in
 the form given in Fig. 5,
 using the sum-of-squared
 error norm given by Eq. (5).
 Recall that the maximum

 amplitude has been nor-

 malized to 1.0. (a) A
 threshold of 0.001 yields
 61 segments, some of
 which contain only two
 points of the original data.
 (b) Threshold = 0.01, re-
 sulting in 22 segments, a

 few of which are still only
 two points long. (c) Twelve
 segments are found when
 the threshold = 0.05; the
 shortest segment now
 covers five points of the
 original data. When the

 threshold is raised to 0.1

 (not shown), the first blip
 in the attack is missed

 completely. See Section 4.3
 for further discussion.

 (a)

 S 0.5

 0-

 0 0.25 0.5

 Time

 . (b)

 0.5

 0-
 0 0.25 0.5

 Time

 (c)

 0.5-

 0-

 0 0.25 0.5

 Time

 way, but it seems impossible to reach any general
 conclusion about the superiority of any algorithm
 or error norm for the purposes of the work outlined
 in the introduction to this article.

 Rather, it has proven impossible to find a para-
 digm for controlling the threshold for the one
 waveform shown here so that the projected percep-
 tually salient features (e.g., blips in the attack) can
 be retained or removed without concomitant, sig-

 nificant changes in the rest of the waveform. If the
 threshold is large, then the analysis delivers the
 overall waveshape; with a small threshold, sup-
 posedly necessary details are retained along with
 presumably superfluous ones. (Moorer [1980] has
 suggested that the threshold could be dynamically
 adjusted according to some measure of randomness,
 but this approach has not yet been explored.)

 In general, our experience has led to the con-

 Strawn 13

This content downloaded from 132.174.254.3 on Sun, 18 Feb 2018 16:34:47 UTC
All use subject to http://about.jstor.org/terms

 clusion that no single algorithm of this type will
 ultimately be sufficient for the systematic explora-
 tion of timbre and data reduction. None of these

 algorithms can take into account both global and
 local considerations, which seems to be a major
 drawback. Still, these methods will probably be
 useful in a wide variety of musical applications
 where such control is not a prime consideration.

 5. Syntactic Analysis

 Hierarchical syntactic analysis would seem ideal
 for mediating between global and local considera-
 tions. In the rest of this paper, then, such an
 approach will be presented.

 5.1 Introduction

 The method to be discussed draws extensively from
 the literature on pattern recognition through syn-
 tactic analysis, which is based on the similarities
 between the structures of patterns and (formal) lan-
 guages. There are, of course, many other methods
 of pattern recognition, such as template matching,
 but they will not be discussed here.

 In syntactic pattern recognition, a relatively
 small vocabulary of terminals, called primitives, is
 "parsed" according to the rules (productions) of a
 grammar to form higher-level nonterminals known
 as "subpatterns" and "features." Characteristic fea-
 tures are further grouped into patterns (or objects).
 A successful parse is equated with "recognition" of
 the pattern. Fortunately, many of the problems in-
 volved in pattern recognition by computer can be
 ignored here. A considerable body of literature is
 devoted, for example, to the question of finding
 lines in digitized pictures.

 5.2 Primitives

 One major advantage of syntactic analysis lies in
 the fact that a relatively small vocabulary of primi-
 tives can be used for constructing a wide variety of
 patterns. The choice of primitives is thus an impor-

 tant issue. It would seem reasonable, for example,
 to require that the same primitives be used in the
 analysis of both amplitude and frequency functions
 even if it turned out that analysis of the two at
 higher levels followed different rules.

 A generalized approach to primitive selection has
 not yet been found. Fu, however, gives the follow-
 ing two requirements to serve as guidelines:

 (i) The primitives should serve as basic pattern
 elements to provide a compact but adequate
 description of the data in terms of the specified
 structural relations (e.g., the concatenation
 relation).
 (ii) The primitives should be easily extracted
 or recognized by existing nonsyntactic meth-
 ods, since they are considered to be simple and
 compact patterns and their structural informa-
 tion not important (Fu 1974, p. 47).

 Various kinds of primitives have been developed for
 different pattern-recognition applications. Fu gives
 many examples, such as Freeman's chain code and
 half-planes in the pattern space for representing ar-
 bitrary polygons. However, in light of the restric-
 tion (still to be justified) imposed in Eq. (3), it
 seems reasonable to use very small line segments
 connecting points of the original data as primitives
 for syntactic analysis.

 For reasons discussed by Moorer (1976), the im-
 plementation of the phase vocoder used at CCRMA
 performs an averaging of the amplitude and fre-
 quency functions. At a sampling rate of, for
 example, 25.6 kHz, 32 samples of the original out-
 put (corresponding to 1.25 msec) might be averaged
 to form one output point. These averaged output
 points are perfectly suited to serve as breakpoints
 for line-segment primitives in syntactic analysis,
 and will be used as such in this paper.

 5.3 Grammar

 The choice of primitives having been made, the
 next step is to decide on a set of subpatterns and
 features, and to specify a grammar for parsing the
 primitives accordingly. Davis and Rosenfeld (1978)
 provide a grammar based on hierarchical relaxation

 14 Computer Music Journal

This content downloaded from 132.174.254.3 on Sun, 18 Feb 2018 16:34:47 UTC
All use subject to http://about.jstor.org/terms

 methods. Briefly, a line-segment primitive is classi-
 fied as having length x or 2x, and as being hori-
 zontal, sloped upward, or sloped downward. The
 relaxation algorithm parses the primitives into
 longer line segments at a first hierarchical level; at
 the second level, peaks and valleys are formed from
 the line segments of the first level, and the final
 level expresses the whole function as a con-
 catenation of valleys and peaks. There are produc-
 tions in the grammar for combining not only two
 adjacent primitives, but also two primitives sepa-
 rated by another.

 Pavlidis (1971) provides examples of a grammar
 which can be used to remove line segments of very
 short duration and to substitute in their place a sin-
 gle straight line. Grammars for finding more
 complex features such as the so-called "hats" (up-
 horizontal-down) or "cups" (down-horizontal-up)
 are given as well.

 Having examined a large number of amplitude
 and frequency functions, it seemed reasonable to
 the author to specify three hierarchical levels for
 syntactic analysis. The first level attempts to re-
 move very small features which one would ascribe
 to noise in the waveform, artifacts of the analysis
 procedure, and so on. The second reduces the wave-
 form to its overall shape in terms of fairly long line
 segments, and the third classifies those line seg-
 ments into parts of a note. The analysis system,
 which incorporates elements of the two methods
 just reviewed, will be presented in detail.

 The primitives have already been specified as
 being very short line segments. Associated with
 each primitive is its duration and its slope, which
 are used to classify the line as up, down, or hori-
 zontal. The only relational operator between
 primitives is, coincidentally, the concatenation
 mentioned in the quote from Fu. Pattern recogni-
 tion can often involve other operators such as
 above and below or to the right, which complicate
 the analysis significantly, but these will not be con-
 sidered here.

 5.3.1 Level la: lineSeg

 The grammar for the first two hierarchical levels is
 presented in Fig. 9. There are two subdivisions of

 Level 1. In the first, successive microLineSeg primi-
 tives (as they will be called) are combined into
 lineSeg as long as (1) the next microLineSeg is
 within the thresholds DurThresh and YThresh

 (defined in Fig. 9), or the direction of the first
 microLineSeg in the lineSeg being formed is the
 same as the direction of the next microLineSeg; and
 (2) including the next microLineSeg will not cause
 the duration of the lineSeg being formed to exceed
 some threshold IYThresh.

 After a new lineSeg has been found, its duration
 is calculated as the sum of the durations of the con-
 stituent microLineSegs. The slope for the new
 lineSeg ai is likewise calculated using the values of
 f(ta(i-l) and f(tai) at its beginning and endpoints.
 (This is known as a synthesized attribute of ai
 [Knuth 1968]). A similar process takes place at the
 other hierarchical levels.

 5.3.2 Level l b: macroLineSeg

 It proved advisable to insert a second subdivision
 into this hierarchical level in order to avoid occa-
 sional irregularities at Level 2. This is accom-
 plished by the introduction of macroLineSeg,
 which are formed of one or more lineSeg, all with
 the same direction (up, down, or horizontal).

 5.3.3 Level 2: featureLineSeg

 The second hierarchical level uses a syntax with
 productions and conditions corresponding exactly
 to those of Level la. At this second level, mac-
 roLineSeg are combined into featureLineSeg, with
 thresholds chosen so that only the most striking
 elements of the function remain.

 5.3.4 Level 3: Note

 At the third level, featureLineSeg are assigned to
 the various parts of a note: attack, steady-state, and
 decay, as well as to any silence which might occur
 before the attack. Software has been written to
 search out the longest horizontal segment for
 which the amplitude (in an amplitude function) ex-
 ceeds some silence threshold and the duration

 exceeds some minimum time threshold. Anything

 Strawn 15

This content downloaded from 132.174.254.3 on Sun, 18 Feb 2018 16:34:47 UTC
All use subject to http://about.jstor.org/terms

 Fig. 9. Grammar for the
 first two levels of hier-
 archical syntactic analysis.
 The conditional form is
 based on a model used by
 Pavlidis (1971). The com-
 plete hierarchy is shown in
 Fig. 11. At Level 1 the

 primitives (microLineSeg)
 are parsed into lineSeg and
 then the latter are com-

 bined when possible into
 macroLineSeg. The same
 syntax, but with different
 thresholds and correspond-
 ing changes in nontermi-

 nals, is used in Level 2 for
 combining macroLineSeg
 into featureLineSeg. A less
 formal version of the gram-
 mar is given in section 5.3
 of the text.

 Vocabulary:
 VN = lineSeg, macroLineSeg, featureLineSeg
 VT = microLineSeg

 Abbreviations:

 TL, f(TL) beginning point of lineSeg (featureLineSeg in Level 2)
 S-, f(ni-1) beginning point of microLineSeg ai (macroLineSeg in Level 2)
 Ti, f(A) endpoint of microLineSeg ai (macroLineSeg in Level 2)
 DM1 direction of first microLineSeg in lineSeg
 DM direction of microLineSeg
 DL1 direction of first lineSeg in'macroLineSeg
 DL direction of lineSeg
 DMA1 direction of first macroLineSeg in featureLineSeg
 DMA direction of macroLineSeg

 Thresholds:
 DurThresh

 duration of microLineSeg (macroLineSeg in Level 2)
 IYThresh

 threshold for abs[f(Ti) -f(L)], constrained to be > YThresh
 YThresh

 threshold for abs[f(T,)-f(Ti- 1)]

 Level Condition Production

 la >Ti-i-, > durThresh V
 abs[f(,r)-f(r-1)] > YThresh V

 abs[f(i)-f(T,-1)] > IYThresh lineSeg ::= microLineSeg

 i-,i-, < durThresh A abs[f(IA)-f(iz-1)] YThresh A

 abs[f(rT)--f(rL)] < YThresh lineSeg ::= lineSeg,microLineSeg
 DMl=DM A

 abs[f(ri)-f(TL)] < YThresh lineSeg :: = lineSeg,microLineSeg

 lb DL1= DL macroLineSeg ::= macroLineSeg,lineSeg

 (none) macroLineSeg::= lineSeg

 2 r--rTi, > durThresh V
 abs[f(,i)-f(_,J)] > YThresh V
 abs[f(,)-,f(i-,)] > IYThresh featureLineSeg ::= macroLineSeg
 i-Ti-, <- durThresh A

 abs[f(r-)-f(Ai,_)] < YThresh A abs[f(Ar)-f(rL)] < YThresh featureLineSeg ::= featureLineSeg, macroLineSeg

 DMA1 = DMA A

 abs[f(7-)-f(TL)] < IYThresh featureLineSeg ::= featureLineSeg,macroLineSeg

 16 Computer Music Journal

This content downloaded from 132.174.254.3 on Sun, 18 Feb 2018 16:34:47 UTC
All use subject to http://about.jstor.org/terms

 between the initial silence and the steady-state is
 classified as attack; everything after the steady-
 state is decay. If no steady-state is found, then as
 many successive up featureLineSeg as possible are
 grouped together following the initial silence to
 form the attack, and the remaining featureLineSeg
 are assigned to the decay. It should be emphasized
 that the attack-steady-state-decay terminology
 is used merely for convenience in labeling part of
 the syntactic analysis, with no semantic implica-
 tions, at least at this stage.

 5.4 Analysis of Amplitude Functions

 Figure 10 shows an analysis of the waveform of Fig.
 1 at every stage of the hierarchical analysis. None
 of these plots represents the ultimate form of
 the output from this method of analysis; further
 processing is envisioned, as will be discussed. How-
 ever, by adjusting the thresholds properly, data
 reduction at, say, the lineSeg level (Fig. 10[a]) can
 be achieved which will probably be useful in a wide
 variety of cases.

 The model for the analysis of an amplitude wave-
 form assumes that the note will consist of the parts
 discussed above. This attack-steady-state-decay
 model has been widely used in commercial analog
 synthesizers. The fact that it appears here is merely
 coincidental. The class of waveforms for which this
 software has been optimized is restricted to wave-
 forms derived from a limited set of test tones

 lasting, typically, one-quarter of a second or longer.
 Ultimately these programs will be used to ana-

 lyze two or three such notes played in succession,
 either separated by silence or connected in some
 way (legato, portato, etc). In fact, the software has
 already been implemented to handle such groups of
 notes. Briefly, the output of a given channel of the
 phase vocoder is first compared with an amplitude
 threshold. Notes are initially defined within the en-
 tire function as being separated by periods of
 silence. The hierarchical analysis is then performed
 on a note-by-note basis. Each period of silence is as-
 signed to the note immediately following. The
 entire function is thus represented as a linked list

 of notes followed by an optional silence. Each note,
 in turn, includes an optional initial silence, attack,
 decay, and optional steady-state. Within each note,
 the line segments at a given hierarchical level are
 represented as a linked list of records. A line seg-
 ment at one hierarchical level also has pointers to
 one or more line segments at the next lower hier-
 archical level which the line segment at the higher
 level encompasses.

 5.5 Analysis of Frequency Functions

 This preliminary division of a function into notes
 incorporates the notion of planning originally for-
 mulated by Minsky (1963) but used here as
 developed by Kelly (1971). Planning is further ap-
 plied to the analysis of the frequency functions
 produced by the phase vocoder, which is especially
 problematical at low amplitudes where the fre-
 quency traces varies widely (Fig. l[b]). There is also
 the problem of phase wraparound, which occasion-
 ally produces characteristic spikes in the frequency
 trace. Before the frequency traces are submitted to
 syntactic analysis, these spikes are removed from
 the regions of the frequency trace bounded by the
 attack-steady-state-decay parts of the notes in
 the amplitude function. These same portions of the
 frequency trace are then analyzed syntactically
 using the grammar already given in Fig. 9. Details
 of the assignment of featureLineSeg to the parts of a
 note vary slightly for the frequency functions but
 the basic approach is the same. Fig. 11 shows the
 results of syntactic, hierarchical analysis of the fre-
 quency trace belonging to the same harmonic as
 the tone shown in Fig. 10. Obviously the thresholds
 are different for amplitude and frequency functions.
 Given the diverging abilities of the ear to discrimi-
 nate frequency and amplitude, it would not be
 surprising if the higher-level analysis of frequency
 functions could eventually be simplified or modi-
 fied somewhat.

 An entire musical phrase is thus represented as a
 linked list of phase vocoder channel outputs. Each
 channel consists of an amplitude and frequency
 function. Each function in turn points to a linked

 Strawn 17

This content downloaded from 132.174.254.3 on Sun, 18 Feb 2018 16:34:47 UTC
All use subject to http://about.jstor.org/terms

 Fig. 10. Syntactic hier-
 archical analysis of the
 amplitude waveform
 shown in Fig. 1. (a) line-
 Seg, resulting from analy-
 sis of microLineSeg, with
 DurThresh = 0.01 sec,
 YThresh = 0.01, and

 IYThresh = 0.1. (b) line-
 Seg of the same direction
 have been combined into

 macroLineSeg. (c) fea-
 tureLineSeg, with Dur-
 Thresh = 0.1 sec, YThresh
 = 0.2, and IYThresh = 0.4.
 (d) Analysis of feature-

 LineSeg into parts of a
 note. The "direction" of
 the straight line from t -
 0.1 sec to t = 0.175 sec in

 (c) is analyzed as being di-
 agonal (pointing down-
 ward) and therefore is not
 classified as belonging to a

 steady-state. There are 65
 line segments in the ap-
 proximation of (a), 19 line
 segments in (b), and 7 in
 (c).

 1- (a))(a)

 0-

 0 0.25 0.5

 Time

 1-

 (b)

 0 0.25 0.5
 Time

 1 = (C)

 4-'

 0

 0 0.25 0.5

 Time

 (d)

 4-J

 0-

 0 0.25 0.5
 Time

 18 Computer Music Journal

This content downloaded from 132.174.254.3 on Sun, 18 Feb 2018 16:34:47 UTC
All use subject to http://about.jstor.org/terms

 Fig. 11. Syntactic hier-
 archical analysis of the
 frequency function of Fig.
 1(b). The vertical line ex-
 tending to the x-axis on
 the right-hand side is an
 artifact of the display rou-
 tine used for plotting; com-
 pare this with Fig. 1(b). (a)
 lineSeg, resulting from
 analysis with DurThresh
 = 0.01 sec, YThresh = 2,

 and ,YThresh = 5 (YThresh and YThresh in
 Hertz). (b) lineSeg of the
 same direction have been
 combined into macroLine-

 Seg. (c) featureLineSeg,
 with DurThresh = 0.1 sec,
 YThresh = 10, and IY-
 Thresh = 30. (d) Analysis
 of featureLineSeg into
 parts of a note. The "de-
 cay" slopes slightly down-

 ward because it is con-

 strained to end at a point
 which occurs at the same

 time as the final point of
 the note found in the am-
 plitude function. As stated
 in the text, however, use of
 the terms attack, steady-
 state, and decay is merely
 for the sake of conve-
 nience. The top-down
 parse allows such pre-

 liminary analysis to be
 refined considerably before
 arrival at a final set of
 breakpoints for such a
 function. There are 80 line
 segments in the approx-
 imation of (a), 46 line
 segments in (b), and 14 in
 (c).

 (a)

 1500

 a 1250

 0 0.25 0.5

 Time

 S(b)

 soo1500

 1250

 0 0.25 0.5
 Time

 (c)

 1500

 S1250 -

 0 0.25 0.5
 Time

 S (d) 1500

 1250

 0 0.25 0.5

 Time

 Strawn 19

This content downloaded from 132.174.254.3 on Sun, 18 Feb 2018 16:34:47 UTC
All use subject to http://about.jstor.org/terms

 Fig. 12. Overview of the
 data structure used in the

 hierarchical syntactic
 analysis. Curly brackets
 are used to delineate a

 two-way linked list of rec-
 ords; the arrangement of
 pointers between hier-
 archical levels indicates

 one of many possible con-

 figurations. Names of the
 hierarchical levels are en-

 closed in parentheses.

 musical phrase

 {amp channel 1 amp channel 2 -.. . * amp channel n} (phrase)

 It I It (phase vocoder {freq channel 1 +- freq channel 2 - ... *- freq channel n } channel)

 -- ampNotel *- ampNote2 <-... +- ampNoten *-* final silence} (note)

 {freqNote , <- freqNote2 -.. . freqNoten * final silence}

 {silence, attack, steady-state, decay} {silence, attack, steady-state, decay} ... (part of note)

 {fls1 - fls2 *- *- fls, 4 fls,,- flSI} (featureLineSeg)

 {ma *-* ma2 * ma mar - ma,} (macroLineSeg)

 {li, li2 > l I b I-lii (lineSeg)

 {mi1 mi2 l ... miat mip <- miY} (microLineSeg)

 list of notes which are individually analyzed in
 terms of the grammar presented here. The complete
 structure is summarized in Fig. 12.

 5.6 Refinement: A Top-Down Parse

 This "bottom-up" parse is only the beginning of a
 projected system, shown in Fig. 13. Once the at-

 tack, steady-state, and decay portions of the
 amplitude function have been found, they can be
 utilized in terms of planning as a guide for a "top-
 down" directed search for features to be included in
 the final set of breakpoints. The output would thus
 no longer be grouped according to attack, steady-
 state, or decay. Rather, it would consist of the
 breakpoints found and confirmed by the top-down
 analysis.

 20 Computer Music Journal

This content downloaded from 132.174.254.3 on Sun, 18 Feb 2018 16:34:47 UTC
All use subject to http://about.jstor.org/terms

 START

 i -o0

 S-i + 1

 i > number of channels? Y a

 N

 Preprocessing of current function (Planning):
 amplitude: silence threshold for determining "notes"

 frequency: remove phase wraparound artifacts

 t a

 i --i + 1

 N

 0

 1st hierarchical level: remove small features

 2nd hierarchical level: remove larger features
 3rd hierarchical level: assign larger features to parts of note

 refine syntactic analysis: top-down parse

 frequency function: (use amplitude function as guide)
 syntactic analysis: bottom-up parse

 1st hierarchical level: remove small features
 2nd hierarchical level: remove larger features

 3rd hierarchical level: assign larger features to parts of note
 refine syntactic analysis: top-down parse

 I

 Fig. 13. Overview of the
 proposed analysis system
 in its final form, modeled
 after a system used in pat-
 tern recognition (Fu 1974,

 p. 5; Rosenfeld 1969, p.
 105).

 it9 > flag<FALSE

 I -0

 +c~

 Y j. > number of notes?
 N

 refine all functions for current note

 change made?

 flag <-- TRUE

 confirm and refine note/silence boundaries

 change made? N

 N

 DONE

 Strawn 21

This content downloaded from 132.174.254.3 on Sun, 18 Feb 2018 16:34:47 UTC
All use subject to http://about.jstor.org/terms

 Fig. 14. In this figure, the
 endpoints of an approx-
 imating line segment are
 not constrained to be

 points of the original data.
 The solid lines represent

 some line-segment approx-
 imation to a function (dot-
 ted line). The parser has
 decided that an additional

 breakpoint is to be in-
 serted near the bottom of

 the "valley," as indicated
 by the dashed lines. But in
 order to do so, the original
 endpoints for the solid line
 must be recalculated. This

 additional computational

 overhead is reduced in the

 current implementation by
 the requirement of Eq. (3).

 100

 75

 I *

 ?I

 - * I
 50 / : :

 25

 0 250 500 750

 Consider the blips in the attack portion of the
 amplitude waveform analyzed in Fig. 10. A blip can
 be represented as a characteristic succession of line
 segments (e.g., up-down-up, or up-horizontal-down-
 up) at the lineSeg level. Such a pattern can easily be
 found using syntactic analysis. The juncture of "at-
 tack" and "steady-state" can be refined similarly,
 for example, by "tracking" to extend each part as
 far as possible (Shirai 1973) oi to include an initial
 "overshoot" at the beginning of the steady-state.
 After each function is refined in this manner, the
 entire family of functions can be scanned to con-

 firm the acceptability of various features for each
 note (cf. Fig. 13). For example, a flag can be set to
 retain a blip in an amplitude function only if the
 blip occurs at the same place in, say, more than two
 harmonics. The initial segmentation of the phase
 vocoder channel outputs into notes can likewise be
 confirmed by comparing all of the functions. It
 might happen that a spurious "silence" detected in
 some amplitude function would result in an er-
 roneous initial division of one note into two. Such
 an error can be corrected at this stage.

 This also provides, at long last, the justification

 22 Computer Music Journal

This content downloaded from 132.174.254.3 on Sun, 18 Feb 2018 16:34:47 UTC
All use subject to http://about.jstor.org/terms

 for requiring that all breakpoints in the approxima-
 tion be identical to points of the original waveform
 (Eq. [3]). If the approximations at the various hier-
 archical levels could include other points, then a
 large amount of recomputation would be necessary
 every time a breakpoint were modified (Fig. 14). In
 other words, it seems reasonable at this stage to re-
 quire that the analysis retain some of the low-level
 information, in the form of the original data points,
 at higher levels of the parse. This requirement may
 have to be modified later, however, if it turns out
 that a significant reduction in the final number of
 segments can be achieved by doing so.

 Other methods from pattern recognition will
 probably prove useful in this work. Perhaps
 stochastic syntax analysis (Fu 1974) in the bottom-
 up parse would reduce the amount of refining to be
 done later. The Hough transform (Duda and Hart
 1973; lannino and Shapiro 1978) might also prove
 useful for deciding, for example, that four points
 defining two separated line segments ai and ai+k,
 k > 1, were actually colinear and that the entire
 function between them could be represented as a
 single line.

 6. Summary and Conclusion

 Various algorithms from the literature on approx-
 imation theory and pattern recognition have been
 shown to be useful for approximating waveforms in
 digital sound synthesis. A syntactic analysis
 scheme has also been presented which will ul-
 timately be extended to a generalized parser for
 amplitude and frequency functions.

 This work represents one aspect of the growing
 application of artificial intelligence (AI) techniques
 to musical problems. The syntax and data structure
 here could easily be extended to a system for in-
 strument recognition similar to the speech-recogni-
 tion system Hearsay (Erman and Lesser 1975;
 Erman 1976). A scheme for automatic transcription
 of music could also be derived which in turn could

 be used to drive a music-analysis system such as
 that developed by Tenney (1978). The syntactic
 analysis presented here will also be useful for ap-
 proximating other time-varying waveforms in a
 wide variety of musical applications.

 7. Acknowledgments

 Dexter Morrill (Colgate University) provided the
 trumpet tone used as an example in this paper. In
 addition to assisting at every stage of this work,
 James A. Moorer (CCRMA) contributed consider-
 ably to the design and implementation of the
 syntactic analysis. I would also like to express my
 appreciation to my teachers and colleagues for their
 time, patience, and many helpful suggestions: John
 Chowning, John Grey, and Julius Smith (CCRMA);
 Barry Soroka (Stanford AI Project); and Curtis
 Roads.

 References

 Attneave, F. 1954. "Some Informational Aspects of Visual
 Perception." Psychological Review 61:183-193.

 Beauchamp, James W. 1969. "A Computer System for
 Time-Variant Harmonic Analysis and Synthesis of Mu-
 sical Tones." In Music By Computer, ed. Heinz von
 Foerster and James Beauchamp. New York: John Wiley
 and Son.

 Cox, M. G. 1971. "An Algorithm for Approximating Con-
 vex Functions by Means of First-Degree Splines."
 Computer Journal 14:272-275.

 Davis, Philip J. 1963. Interpolation and Approximation.
 New York: Blaisdell.

 Davis, Larry S. 1977. "Shape Matching Using Relaxation
 Techniques." Proc. 1977 IEEE Conf. on Pattern Recogni-
 tion and Image Processing. Rensselaer, New York, pp.
 191-197.

 Davis, Larry S., and Rosenfeld, Azriel. 1978. "Hierarchical
 Relaxation for Waveform Parsing." In Computer Vision
 Systems, ed. Allen R. Hanson and Edward M. Riseman.
 New York: Academic Press, pp. 101-109.

 Duda, Richard 0., and Hart, Peter E. 1973. Pattern Classi-
 fication and Scene Analysis. New York: John Wiley and
 Son.

 Dudani, Sahibsingh, and Luk, Anthony L. 1977. "Locating
 Straight-Line Edge Segments on Outdoor Scenes." Proc.
 1977 IEEE Conf. on Pattern Recognition and Image
 Processing. Rensselaer, New York, pp. 367-377.

 Erman, Lee D. 1976. "Overview of the Hearsay Speech
 Understanding Research." SIGART Newsletter 56:9-
 16.

 Erman, Lee D., and Lesser, Victor R. 1975. "A Multi-Level
 Organization for Problem Solving using Many, Diverse,
 Cooperating Sources of Knowledge." In Advance Pa-

 Strawn 23

This content downloaded from 132.174.254.3 on Sun, 18 Feb 2018 16:34:47 UTC
All use subject to http://about.jstor.org/terms

 pers. Fourth International Conference on AI, Tbilisi,
 USSR, pp. 483-490.

 Fu, K. S. 1974. Syntactic Methods in Pattern Recognition.
 New York: Academic Press.

 Grey, John M. 1975. "An Exploration of Musical Timbre."
 Ph.D. thesis, Stanford University. Distributed as De-
 partment of Music Report No. Stan-M-2.

 Iannino, Anthony, and Shapiro, Stephen D. 1978. "A Sur-
 vey of the Hough Transform and its Extensions for
 Curve Detection." In Proc. IEEE Conf. Pattern Recogni-
 tion and Image Processing. Chicago, 1978, pp. 32-38.

 Kelly, M. D. 1971. "Edge Detection in Pictures by Com-
 puter Using Planning." Machine Intelligence 6:397-
 409.

 Knuth, D. E. 1968. "Semantics of Context-Free Lan-
 guages." J. Mathematical Systems Theory 2: 127-146.

 Minsky, Marvin. 1963. "Steps toward Artificial Intel-
 ligence." In Computers and Thought, ed. Edward
 Feigenbaum and Julian Feldman. New York: McGraw-
 Hill, pp. 406-450.

 Moorer, James A. 1973. "The Heterodyne Method of
 Analysis of Transient Waveforms." Artificial Intel-
 ligence Laboratory Memo AIM-208. Stanford: Stanford
 University.

 Moorer, James A. 1976. "The Use of the Phase Vocoder in
 Computer Music Applications." Journal of the Audio
 Engineering Society 26(1/2):42-45.

 Moorer, James A. 1977. "Signal Processing Aspects of
 Computer Music: A Survey." Proceedings of the IEEE
 65(8): 1108-1137.

 Moorer, James A. 1980. Personal communication.
 Moorer, James A.; Grey, John M.; and Strawn, John. 1978.

 "Lexicon of Analyzed Tones. Part 3: The Trumpet."
 Computer Music Journal 2(2) :23-31.

 Pavlidis, Theodosios. 1971. "Linguistic Analysis of Wave-
 forms." In Soft'ware Engineering, vol. 2, ed. Julius T.
 Tou. New York: Academic Press, pp. 203-225.

 Pavlidis, Theodosios. 1973. "Waveform Segmentation
 through Functional Approximation." IEEE Transactions
 on Computers C-22(7): 689-697.

 Pavlidis, Theodosios, andHorowitz, Steven L. 1974. "Seg-
 mentation of Plane Curves." IEEE Transactions on

 Computers C-23(8) : 860-870.
 Pavlidis, Theodosios, and Maika, A. P. 1974. "Uniform

 Piecewise Polynomial Approximation with Variable
 Joints." Journal of Approximation Theory 12:61-69.

 Phillips, G. M. 1968. "Algorithms for Piecewise Straight
 Line Approximations." Computer Journal 11:211-212.

 Portnoff, M. R. 1976. "Implementation of the Digital
 Phase Vocoder Using the Fast Fourier Transform." IEEE
 Transactions on Acoustics, Speech, and Signal Process-
 ing ASSP-24: 243-248.

 Risset, Jean-Claude, and Mathews, Max V. 1969. "Analy-
 sis of Musical-Instrument Tones." Physics Today
 22(2):23-30.

 Rosenfeld, Azriel. 1969. Picture Processing by Computer.
 New York: Academic Press.

 Shirai, Yoshiaki. 1973. "A Context-Sensitive Line Finder
 for Recognition of Polyhedra." Artificial Intelligence
 4(2):95-119.

 Shirai, Yoshiaki. 1978. "Recognition of Real-World Ob-
 jects Using Edge Cue." In Computer Vision Systems,
 ed. Allen R. Hanson and Edward M. Riseman. New

 York: Academic Press, pp. 353-362.
 Stone, Henry. 1961. "Approximation of Curves by Line

 Segments." Mathematics of Computation 15:40-47.
 Strong, William, and Clark, Melville. 1967. "Synthesis of

 Wind-Instrument Tones." Journal of the Acoustical So-
 ciety of America 41(1) :39-52.

 Symons, M. 1968. "A New Self-organising Pattern Recog-
 nition System." Conference on Pattern Recognition.
 Teddington, pp. 11-20.

 Tenney, James (with Polansky, Larry). 1978. Hierarchical
 Temporal Gestalt Perception in Music: A "Metric
 Space" Model. Toronto: York University.

 Tou, Julius T., and Gonzales, Rafael C. 1974. Pattern Rec-
 ognition Principles. Reading, Massachusetts: Addison-
 Wesley.

 24 Computer Music Journal

This content downloaded from 132.174.254.3 on Sun, 18 Feb 2018 16:34:47 UTC
All use subject to http://about.jstor.org/terms

	Contents
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24

	Issue Table of Contents
	Computer Music Journal, Vol. 4, No. 3, Artificial Intelligence and Music Part 2 (Autumn, 1980), pp. 1-79
	Front Matter [pp. 1-1]
	Editor's Notes [p. 2]
	Approximation and Syntactic Analysis of Amplitude and Frequency Functions for Digital Sound Synthesis [pp. 3-24]
	Interview with Marvin Minsky [pp. 25-39]
	Musical Software: Descriptions and Abstractions of Sound Generation and Mixing [pp. 40-47]
	Computer Improvisation [pp. 48-58]
	Reviews
	Review: untitled [pp. 59-61]
	Review: untitled [pp. 61-63]
	Review: untitled [pp. 63-64]
	Review: untitled [pp. 64-65]

	Report from the 1980 Audio Engineering Society Convention in Los Angeles [pp. 66-73]
	Products of Interest [pp. 74-79]
	Back Matter

