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Abstract

Due to limitations of available analysis techniques, musical instruments have to date been studied
one note at the time. As a first step in exploring larger musical contexts, this dissertation examines
what happens in the transition between notes. In a transition, the pitch changes, the amplitude
momentarily drops, and there are spectral changes. These elements of a transition were the focus
of this thesis, along with the length of time required for the transition.

Ascending and descending intervals, ranging in size from major second through minor seventh,
were recorded on'nine non-percussive orchestral instruments. Plots of many of these 212 transitions
are presented in the text and appendices. Existing techniques were extended to permit time-
varying power and spectral analyses of the transitions. The recorded transitions did not vary
significantly with the size of the instrument (except to a certain extent for the strings), the
size of the interval, or the direction of the interval. On the other hand, there were characteristic
differences between tongued and untongued transitions in the gap time between notes, in the time-
varying amplitude envelope of the transition, and in the time-varying spectral changes around the
transition. Analysis of repeated performances of the same interval and playing style on a given
instrument showed that the set of recordings was representative. The ascending third (tongued
and untongued, with and without bow change) was chosen from the clarinet, trumpet, and violin
recordings for further work.

The short-time Fourier transform (phase vocoder) was shown to be adequate for modeling
a transition. New methods were developed for creating and editing line-segment approximations
which were also shown to be adequate for modeling transitions.

A number of experiments were conducted on the time gap, amplitude dip, spectral changes,
and slope of the amplitude envelope at the transition. Categorical perception of transitions could
not be shown to occur. Some insight was gained into the perception of timbre in transitions.

Various useful signal processing techniques were developed, including methods for amplitude
scaling and for extending waveforms. The dissertation concludes with a summary of methods,

culled from the experimental work, for creating natural-sounding synthetic transitions.
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CHAPTER 1

INTRODUCTION

“Everyone knows” that music is made of notes. Some music, called monophonic, is played on one
instrument—and notes are strung together. When more than one instrument is playing simul-
taneously (polyphony), several notes are heard at the same time. Due to the problems involved
in recording and analyzing musical instruments, most studies of the physics or the perception of
musical sound to date have dealt with isolated notes. With the advent of digital audio and digital
signal processing, these constraints no longer apply, so musical sound in a musical context can be
explored more easily than before. The musical context chosen here is monophony. In particular,
this study concentrates on the transition between notes, the region where successive notes are

connected.

What is a Transition? (I)

The monophonic instrument 13 thus the most important musical tnstrument, and
the starting point of all musical thinking (LeCaine 1956, p. 465)

At least since von Helmholtz,* musical notes have been split into a central region called the steady-
state, which is preceded by an attack and followed by a decay (see Figure 1.1a). This model still
dominates thinking about the overall shape of a musical note.

The financial and organizational assistance of Lucasfilm Ltd. and its affiliate The Droid Works is gratefully
acknowledged. “This research was supported by the National Science Foundation under grant NSF MCS 82-14350
and the System Development Foundation under grant SDF #345. The views and conclusions contained in this
document are those of the author and should not be interpreted as necessarily representing the official policies, either
expressed or implied, of Stanford University, any agency of the U.S. Government or of sponsoring foundations.”

*Von Helmholtz's work first appeared in 1862; I have used the posthumous edition of 1918.
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Steady-
State

Attack Decay a)

b)

Figure 1.1. Possible methods for creating a transition between notes. a) No interaction occurs between
the notes. b) The notes are abutted. c) The notes overlap.

The simplest way to model a musical line is to concatenate notes, as is the practice in many
analog and digital synthesizers. There are several possibilities for connecting two successive notes:
1) there might be a gap between the decay of one note and the beginning of the next (Figure 1.1a);
2) the attack of the second note might start right when the decay of the first note finishes (Fig-
ure 1.1b); or 3) the decay of the first note might overlap the attack of the second (Figure 1.1c).
This crude analysis helps refine the definition of transition given above. A transstion includes the
ending part of the decay of one note, the beginning and possibly all of the attack of the next note,
and whatever (if anything) connects the two notes. It will become clear that a transitit?n typically

lasts on the order of tens to hundreds of milliseconds, i.e., a few tenths of a second or less.
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Playing Methods vs. Perceived Articulations

Learning to control the juncture between notes is part of the training of a professional musician.
It is not adequate to simply play notes one after another, as the model of the previous section
would suggest. Successive notes must be purposefully joined in one manner or another. Inertia in
the instrument plays a role too. In other words, the new note does not begin by itself; it must be

helped along.

Articulation in Orchestral Instruments

Wind and brass players are taught the technique of “tonguing,” in which a syllable such as “ta” or
“da” is “spoken” inside the mouth right as the new note begins. Use of this technique is optional:
The wind or brass player can start a note with no tonguing at all. There is a whole range of
intermediate stages between tonguing and no tonguing.

The string player likewise has the choice of continuing to move the bow in the same direction
when starting a new note, or changing bow direction. This is familiar to anyone who has watched
a string section closely. In many ensembles, the strings bow together, following instructions from
the section principal. Here, too, there are other options, such as varying the velocity of the bow
while keeping it moving in the same direction.

Sometimes the composer gives explicit directions about how to play a passage. In general,
when one slur joins several notes in a score, they are all played with one bow stroke on the strings,
and are played without tonguing on the winds. However, in later practice, such as in Wagner, one
- very long slur indicates the desired phrasing rather than the bowing. Sometimes lighter tonguing
or bowing is indicated with dots or dashes under a slur; see, for example, Seagrave and Berman
(1976); Blatter (1980, p. 71); Adler (1982, p. 148); and Burton (1982, p. 2).

But such indications are often missing, or are changed by the performer. When to use these
techniques, and how much separation to allow between notes, is a matter of applying long training
seasoned with good taste to the particular musical passage at hand. For example, Forsyth writes:
“In figures and melodic phrases the legato of the Flute is practicable throughout its entire compass,
and is limited only by the capacity of the player’s lungs. It is, however, more in the character
of the Flute to break up a long series of notes into its component parts, to interpolate detached
notes and groups of notes, and generally to substitute a vivid manner of performance for its more

rapid legato style. [...] In single-tongued phrases the Flautist achieves a consonantal clearness and
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distinction that is more akin to speech-in-song than to anything else. Each note can be made to
sound like a falling hailstone or an unstrung pearl.” (1936, p. 191)

There is a long tradition of written works on performance practice, most of which are not quite
so poetic as Forsyth’s. Playing manuals, even in the Renaissance, specifically discuss articulation
(for an overview, see Donnington [1963]; Carse [1925] gives a good history of orchestration). For
the purposes of the present study, it will be adequate to consider performance practice in modern
orchestral instruments. It is generally accepted that the first modern treatise on orchestration
is that by Berlios (1948), originally published in 1843. His work was revised and expanded by
Strauss, whose comments will also be cited here. Major works on orchestration since then have
included those by Rimsky-Korsakov (1922), Forsyth (1935), Piston (1955), Kunitz (1961), and
Kennan (1970). I also consulted the works of Bussler (1879), Humperdinck (1892), Kling (1905),
Gilson (1922), Teuchert and Haupt (1924), Andersen (1929), Casella and Mortari (1950), Jacob
(1962), Mancini (1—1962), Rauscher (1963), Blatter (1980), Del Mar (1981), Adler (1982), and
Burton (1982). I did not find it necessary to consult playing manuals for individual instruments,
for which Blatter (1980) gives especially good references; the works on orchestration provided
adequate information on modern practice.

These books are filled with much information that is not relevant to the current study. There
are, for example, detailed discussions of the ranges of instruments, which trills are difficult on a
given instrument, when to use chromatic passages, when the high and low ranges of each instrument
can be effectively exploited, and the like. It is of interest, however, to examine what the authors

say about the techniques of tonguing and bowing and the impressions they evoke.

Tonguing: Many of the manuals (Berlioz is a notable exception) discuss when to use tonguing.
In general, tonguing is' appropriate when the note is to be set off slightly from the preceding note,
or for fast passages. (There is even the technique of double- and triple-tonguing to make fast
passages easier; Forsyth [1935, p. 98] has a good discussion.)

However, the situation is not quite so simple. First of all, the player is not limited to a choice
between tonging and non-tonguing. Blatter writes (1980, pp. 71-72), “When placed over a series
of notes, all of which are under a slur, tenuto marks [short horizontal dashes| indicate that the
phrase is to be played legato, that is, as connected articulation in which each note is slightly
stressed but no discernable [sic] separation is heard between notes.” Thus, there is not necessarily
a relationship between the technique used to produce the articulation and the impression that
articulation evokes; the listener might or might not hear the tonguing. Blatter goes on to say,

“Often the tongue is used to produce the stress, but due to the soft, quick stroke involved it may
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not be perceivable, and for this reason the articulation is sometimes called legato tonguing.” This
is an important point for the current work, and will receive careful consideration here.
Concerning the trombone, Forsyth (1936, pp. 138-39) writes in a similar vein: “There is in
general no true legato on the trombone at all. Each note has to be articulated at the moment
that the slide changes its position. There is therefore a perceptible moment between each two
notes when the air-column is not in vibration. Were this not so we should get a distressing
portamento between the notes. In the p and the pp a good player reduces this moment-of-silence
to [a] vanishing point, and produces an effect which Widor happily compares with the sostenuto
of the Violin—a sostenuto which is scarcely interrupted by the turning of the bow. When playing
a succession of notes from the same fundamental, that is to say, when playing without change
of slide-position, the Trombone, of course, enjoys the same advantages of legato-playing as any
slideless Brass Instrument.” Blatter (1980, p. 126) writes along the same lines, and specifically
says that a tromi;onist can create a perceived legato, even with tonguing. Likewise, Adler (1982,
PP- 288-89) praises “[t[rombonists [who| have perfected the coordination of soft-tonguing with

change of position to give an almost perfect impression of legato playing.”

Bowing: As for the strings, Berlioz writes that “The manner of bowing is very important and
greatly influences the somority and expression of motives and melodies. It must be carefully
indicated according to the nature of the idea to be rendered.” Strauss adds, much in the same
vein (p. 20), “For composers it is very important to consider carefully the problem of up-bows
and down-bows when they want to achieve certain nuances.”

As with the winds and brass, the player has a broader choice than simply whether to continue
to bow in the same direction. Berlioz lists 5 kinds of bowing (détaché, slur, extended slur, staccato,
grand détaché porté). Kling (1905, pp. 3-5) lists 13; Andersen (1929) gives 5; Forsyth (1938,
PPp- 339-47) has 8; Burton (1982) discusses 6; Adler (1982, p. 19) enumerates 7 and treats pizzicato
and playing with or without a mute in the same breath; and so on. In short, there is no general
agreement on the way of classifying kinds of bowing, but there are certainly many shades at the
player’s disposal.

As with the wind and brass instruments, the relationship between playing technique and per-
ceived articulation is not always straightforward. Blatter (1980, p. 28) warns that “[tJhe bowings
illustrated [...] do not provide any information relating to articulation (i.e., the manner in which
a note begins and ends). It cannot be ascertained from the locations of up-bow or down-bow,
nor from the note groupings within a bow-stroke, whether or not the notes are to be staccato or

legato.”
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Also writing about the violin, Forsyth (1936, p. 337) says: “When the bow is turned, that is
to say, when a stroke is to be made in the opposite direction, the pressure of the fingers on the
bow-stick is relaxed. In other words, the bow is ‘lightened.” At that instant the bow is turned and
a second (reverse) stroke is begun |...] It must be said that, though at the moment of lightening
the bow the pressure is completely removed and no sound can therefore come from the instrument,
this moment can be made by the most ordinary fiddler so minute in duration as to be inappreciable
to the ear.”

Burton (1982, p. 28) is even more explicit when he writes that [...] the string player can
change from one bow direction to another with no perceptible break in the phrasing. Therefore,
even if a string passage contains many changes of bow direction, the effect can be of a continuous
legato.” In the same vein, Adler (1982, p. 19) says that “[eJven though changes of bow direction
occur between each one of the notes [...], one does not necessarily perceive these changes, since
skilled performers can play the successive notes without a break or any audible difference between
up- and down-bow.” An experienced conductor whose ears and judgment I trust likewise warned
me against the notion that a certain kind of articulation implied a certain kind of playing technique
(Wyss 1984). '

Thus, for both the wind and the string instruments, the perceived articulation is not necessar-
ily a clue to the playing technique. {(Even computer-based analysis systems experience the same
sorts of confusion; Galler and Piszczalski [1978] report that their system would occasionally fail to
detect “legato-tongued notes on the same pitch.”) Furthermore, the fine spectral and amplitude
clues for a given playing style are most likely to be buried in the sound of a whole orchestral sec-
tion, except in the case of purposeful articulation, and are also likely to be inaudible to a listener
in a concert listening situation due to the great distance between player and listener.

The ambiguous relationship between playing technique and perceived articulation has impor-

tant implications for the current work, as will become clear in Chapter 2.

Analysis Techniques

Let us now turn our attention to the question of how instrumental sounds, once recorded, can be
analyszed.
If the Problems of (pseudo-)Aristotle can be accepted as authentic, then enquiry into the

makeup of sound can be traced to at least the ancient Greeks. Certainly that text was a major
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source of inspiration for medieval and Renaissance scientists, who began modern enquiries into
the nature of sound. Miller (1935) and Hunt (1978) give a fascinating account of the development
of knowledge about the nature of sound from antiquity to the present. This history need not
concern us here. Rather, it will suffice to examine modern methods. We will therefore consider
(very briefly) time-invariant Fourier techniques, then the time-varying Fourier techniques which
form the backbone of the current work, and finally several other relevant techniques not used here;

the reasons will of course be discussed.

Analysis of Steady-state Tones

Modern work on the makeup of sound relies heavily on mathematical techniques developed by
Fourier (1888, Vol. 1) in his research into the propogation of heat. His is a method for breaking
a complex waveform into a number of harmonically related sinusoidal components. Fourier tech-
niques are well understood (see, for example, Bracewell 1965). It will be adequate to simply state
the equations defining the technique to pave the way for the discussion in the next section.

Assume that f(z) is a periodic function. The Fourier transform of f(z) is given by
oo .
F(s) = / f(z)e~7"dz (L.1)
)

where j2 = —1. The existence of F(z) is subject to certain conditions which need not concern
us here. It is possible to recover the original function from its Fourier transform by means of the

inverse Fourier transform

f(z)= ;;:‘/'oo F(s)e?**ds.

-0
This is the mathematical basis for the synthesis technique known as additive synthesis.
In the discrete world of sampled (musical) sounds, corresponding transforms fortunately exist.

If z(n) is a signal N samples long, then the discrete Fourier transform (DFT) is given by

X(k) = NZ:I z(n)e~? Hnk, (1.2)
n=0
where k is an index into the N (complex) transform points produced at frequencies evenly spaced
from 0 Hz to the sample rate f,. To recover the original signal, one may apply the inverse discrete
Fourier transform

1 N-1 . .
a(n) = & k; X(k)e? Fnk,
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The DFT can be efficiently implemented with the fast Fourier transform (FFT) (Rabiner and
Gold 1975).

Mechanical, electrical, and electronic devices were built in the 19th and 20th centuries to
calculate the Fourier transform. For example, in his classic study of the composition of musical
tones, von Helmholtz (1913) built a series of what are now called “Helmholtz resonators:” glass
or metal spheres with two openings. Sound is admitted to one opening; the other sits in the ear
(von Helmholtz used sealing wax to make the connection airtight). Resonators can be built that
are tuned to the frequencies of the harmonics of a note; careful listening with various resonators
can permit a coarse analysis of the relative amplitudes of the harmonics.

In 1931, Meyer and Buchmann published an astonishingly thorough study of steady-state
spectra.* Recording sounds with a microphone, they used a tube rectifier to produce a side band
by beating a reference wavé against the waveform. For each harmonic, a different reference wave
was chosen. This meant that the note had to be played once for each harmonic. As they say
(p. 740, my translation), “The note was repeated, depending on the instrument, about once per
second; the demands on the performer were thus quite large. The lower brass instruments, which
require a lot of air, caused a few difficulties.” Of course, since a different note was played to
analyze each new harmonic, the results (as we know now) have to be viewed with caution. At
any rate, they recorded the amplitude of the first-order lower sideband produced in the rectifier.
In fact, careful reading of their p. 740 and their Figure 6 shows that two sideband peaks were
recorded; the average of those two was then taken. In all, the measurements which they made are

remarkable, but cannot be considered reliable for modern work.

Time-varying Analysis Techniques

By the early part of this century, it became evident, as will be discussed shortly, that musical
tones varied significantly with time. It was thus not long before certain researchers attacked the
problem of time-varying analysis.

Another astonishing study of musical instrument tones appeared in 1932, this one by Back-
haus. He apparently recorded tones over a condensor microphone onto a recording device built
by a Mr. H. Gerdien. The recording was captured on a drum turning on a spindle. Apparently
(pp. 32-34) he then performed Fourier analysis on a period-by-period basis, using what I presume

were the mechanical means (Henrici analyzer) available at the time.

*] am indebted to Mr. Folkmar Hein of the Technical University Berlin for making a copy of this article available
to me.
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Luce (1963) outlined a technique in which discrete Fourier analysis was applied at every period
of a digital recording of a musical note. He encountered various difficulties with this technique,
but was able to use it for his work. In the very first preliminary studies for this thesis, I tried
using a similar method, but found it impractical for applications to the transition between notes,
especially as it is difficult to delineate where the periods from one note stop and those from the
next note start (this will be discussed more in Chapter 2).

Résing’s thesis (1967) was based on recordings taken from phonographs, which were analyzed
with the Kay sonograph, “as other means were not available” (p. 22, my translation). The work
by Rasing has lapsed into an obscurity which it does not deserve; Cogan (1984), for example,

seems to be unaware of Rosing’s work.

The Heterodyne Filter: This digital technique for analyzing time-varying spectra was pio-
neered by Freedman (1965, 1967, 1968) and has also been used extensively by Beauchamp (1969).
Basically, each spectral component is “pulled out” of a complex signal by “heterodyning” the
signal by a sine and a cosine at the frequency of interest. The products are filtered and converted
to produce time-varying amplitude and frequency plots. Moorer (1973, 1977) gives a good review
of this technique; Moorer’s implementation was used by Grey (1975). Moorer (1975) also points
out out some pitfalls and how to avoid them. Beauchamp (1981) prepared a tracking version of
the heterodyne filter, which foreshadows Dolson’s work with the phase vocoder (to be discussed
below). ‘

Gish (1978) presented criticisms of the heterodyne filter, and suggested a model which ex-
plicitly included inharmonicity. After all, Fourier analysis claims to capture only harmonically
related components, although information on inharmonicity might be included in the Fourier rep-
resentation. Thus, Gish added a noise term to his synthesis technique. I have to agree with Gish
when he writes that he found “many more components than has been previously reported,” if he
is discussing early studies from the 1960s. But I disagree when Gish criticizes Grey along these
lines; the number of harmonics found by Grey was not that much smaller than the number of
harmonics which I used in my work (see Table 3.5).

As for other precursors of the phase vocoder, to which we will then turn, it should be men-
tioned in passing that in his work on violin tones, Beauchamp (1974) prepared a “line spectrum
movie,” showing the evolution of a violin spectrum; the development of a 1-sec note lasted about
20 sec. This is also the place to mention the methods developed by Freedman (1967, 1968), in
which Fourier analysis is converted into a set of functions called a non-Fourier representation. The

amplitudes of the harmonics are broken down into a series of exponential terms. This technique,
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which was used to analyze notes from musical instruments, is not the same as the heterodyne

filter, as some have assumed.

The Phase Vocoder: The term vocoder was coined from VOICE CODER, the name of a device
designed to reduce the bandwidth needed for satisfactory transmission of speech over phone lines
(see Dudley 1939). The idea was to pass the speech signal through a set of contiguous bandpass
filters, such that the combined output of these filters at a given point in time would be a rough
approximation of the spectrum of the signal. In theory, by transmitting a few filter coefficients,
a savings could be achieved in terms of the transmission bandwidth required to transmit a given
signal (see Schroeder 1966).

In practice a savings was not possible, because too many channels were needed to preserve
speech quality. There was an additional problem in that only the magnitude of each filter output
was being transmitted; phase information was thrown out. Thus, the speech resynthesized from
the encoded version was never identical to the input, regardless of the number of channels.

The phase vocoder (Flanagan and Golden 1966), developed as an extension of the original
vocoder concept, preserved phase information, allowing the input and output of the system to be
identical. Schafer and Rabiner (1973), Portnoff (1976, 1978, 1980) and Holtzman (1980) improved
the technique, with the result that the speed was increased (in terms of computation time), while
still allowing the synthesized output to be identical to the input. In particular, Portnoff (1976)
showed how to implement the phase vocoder with the FFT (see also Allen 1977a, 1977b; Allen and
Rabiner 1977; Crochiere and Rabiner 1983). Portnoff (1978), Holtzman (1980), and Dolson (1983)
developed a method of scaling the original in time without modifying its pitch or spectrum, which
inspired a cruder method which I used (see Appendix 2).

The analysis side of the phase vocoder, which is technically known as the short-time Fourier
transform (STFT), is defined by

X(n, k) = f: z(m)h(n — m)e~I Fmk, (1.3)

m=—00
A new variable m has been introduced into Equation 1.2; m is a dummy variable which allows
for the filtering operation with h(n). In other words, z(n) is windowed with the low-pass filter
h(n), on which there aré certain restrictions. The spectrum X(n, k) at point n is divided into N
frequency bands equally spaced from DC to f, and indexed by k. The quantity k is thus the index

for the “channel” number in the phase vocoder. The original signal can be recovered with the
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inverse short-time Fourier transform

N-1

) =n 3 S fln—m)X(n, R

k=0 m=—co

where f(n) is also a filter.

When one is working with musical sounds, the idea is to align the analysis channels so that
no more than one harmonic of the signal falls into a given channel. If a(n) and b(n) are the real
and imaginary outputs of a channel, respectively, then the amplitude A(n) of the harmonic in the

channel may be recovered as follows:

A(n) =, /a?(n, k) + b3(n, k).
The instantaneous phase ¢(n) is given by
#(n) = arctan [%:%] .

The frequency, calculated as the derivitave of the phase, is then given by

a(n) 2L — p(n) 2e{n)
a?(n) + b2(n)

Details of this conversion process are given in Moorer (1978) and Gordon and Strawn (1985). This
is the system that I used for the work described in Chapters 2 and 3 and Appendix 3.

To prepare for the discussion of Chapter 3, it is necessary to point out here that the spectrum
X(n, k) is not calculated for every sample of the original signal. Rather, every R points can be
skipped; there are restrictions on the relationship between R and N which do not concern us
here. Also, it should be pointed out that choosing k(n) is an important issue. A longer analysis
filter gives better frequency resolution but with a correspondingly coarser resolution in time; and
vice-versa.

Dolson (1983) developed what he calls a “tracking phase vocoder.” The output of a pitch
detection algorithm directs the phase vocoder; the fundamental frequency of the signal being
analyzed can vary widely. On the surface, this would appear to be an ideal analysis method for
research on transitions. Unfortunately, this work reached me after almost all of the phase-vocoder
work described here had been completed. Since the phase vocoder proved adequate, the extra
effort needed for implementing Dolson’s version could not be justified. However, for future studies

exceeding more than one note, it should be examined very carefully.
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Models not found Useful, and Why

Spectrographic plots: Cogan (1984) used an analysis system which prepares spectrographic
plots of musical performance (see also Potter and Teaney 1981). This is the digital equivalent
to the study of Rosing mentioned above. For the current study, this method is inadequate—the
resolution is simply too coarse. Indeed, the spectrographic representation of analyses of individual

instruments has not proven to be useful except for the most general sorts of work (Strawn 1985a).

Acoustic Modeling: It is possible to model musical sound by a set of mathematical formulae
which model the behavior of an instrument. Hiller and Ruiz (1971) reported on their work with
strings. The possibility of modeling in this manner the behavior of a musical instrument during

the transition between notes seems remote indeed at the present time.

Formant Models: Besides the model based on Fourier analysis, there is another very powerful
model for analyzing and synthesizing sound, which is especially popular and useful in work on
speech. A signal is modelled as a “driving function,” which is usually quite rich spectrally, passed
through one or more time-varying filters. The driving function can be the bowed string, the
action of the lips in a brass mouthpiece, a reed, or the human vocal chords. The filters can be the
resonances of the vocal tract or those of an instrument body. Smith’s thesis on strings (1983) is
the most recent work on this method, and provides a good review of this topic.

There are several reasons why I did not pursue this model. One is the difficulty of deriving
the driving function and filter coefficients in the short time which some transitions take. Another
is the question of modeling individual harmonics. It might be possible to model each spectral
component with, say, two poles and two zeros (see Kay and Marple 1981). But what happens
when the spectral components start moving in frequency? In order to obtain a pole-zero model
in this case, there must be an upper limit on compute time used. But then the spectral lines
might be spread into spectral regions. This means that the pole-zero model would yield wide-
band resonances, which would not be useful in the transition. Also, analyzing the pole-zero model
is difficult when spectral components disappear or (re-) enter, as happens in a transition.

Then there is the question of formants. There is no doubt that formants occur (see Strong

and Clark 1967b; Luce and Clark 1967; and Clinch et al. 1982)* and synthesizing musical notes

*The anonymous performers in Clinch’s survey are probably the first known victims of radiation poisoning in
the history of psychoacoustics: they gargled with a barsum compound suspension before being X-rayed while performing.
Imagine.
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with misplaced formants can certainly cause amusing results. Still, the role that formants play in
the synthesis and perception of musical tones in musical contexts remains cloudy. More on this

topic will appear later in this chapter.

The Constant-Q Transform: A number of experiments have demonstrated that some aspects
of auditory perception are subject to what are known as critical band phenomena (see Plomp 1976
for an excellent review). Briefly, a critical band is a region, about a third of an octave wide;
certain aspect.s. of hearing can vary depending on whether the spectral components (or bands of
noise) being tested fall within one critical band. This is true, for example, for aspects of the
perception of loudness, phase differences, and some forms of masking. Even a listener’s ability
to “hear out” partials of a tone can be related to critical bandwidths. These phenomena neatly
match the structure of the basilar membrane, where equal linear distances correspond to equal
log-frequency distances. It should be emphasized that critical bands do not form a fixed set of
filters; as Zwicker and Feldtkeller say, “The ear can form a critical band at any arbitrary point of
the frequency scale” (1967, p. 73, my translation).

A mathematical technique called the constant-Q transform has been developed which models
aspects of this critical band nature of perception (see Youngberg [1979]; Schwede [1983] discusses
implementation details). The quantity @ is a measure of the quality of a filter, and is defined
as the center frequency divided by the bandwidth of the filter. With the phase vocoder, the Q
for each channel diminishes with increasing center frequency, as the filters are equally spaced in
linear frequency, and the filter bandwidths are a constant number of Hertz. One can also construct
filters whose center frequencies and bandwidths model some set of critical bands; the values of Q
for these filters is a constant, hence the name given to the technique. Petersen (1980; Petersen
and Boll 1983) applied the constant-@ transform to modeling the frequency-selective nature of the
auditory system, especially in the suppression of noise (see also Callahan 1976; Kajiya 1979).

Stautner (1983) has developed a variant of constant-Q analysis which he calls the auditory
transform. With this he has produced some interesting results based on principal components
analysis of the filter outputs. Although that method is not used here, his analysis of a tabla
recording is of special interest in this historical introduction (the tabla is a set of drums used
in the music of the Indo-Pak subcontinent). Stautner was able to associate certain principal
components with certain features of the signal, such as the onset of notes, the reverberation at
the end of an earlier note, overall resonances of the drums, and specific drum strokes. However,

he did not specifically attempt to model the transitions in his recordings.
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I believe that the constant-Q approach with a set of fixed filters can become too simplistic
in musical contexts, where the ear can separate two or more notes played together, even those
played in unison. First of all, if critical bands are approximately one-third of an octave wide,
and if the lowest band is centered around the fundamental, then more than one harmonic will
fall into one analysis band starting with the fourth harmonic; given that the filters cannot have
rectangular frequency responses, perhaps even the second and third harmonics would interact in
one band. But if several spectral components falling into one band are reduced to one signal,
then isolating instruments playing the same pitch would be difficult for the ear. To name one
example, consider the continuo bass line in Baroque music; based on listening experience, I am
convinced that it is possible for the listener to separate the bassoon or cello playing in unison with
the organ or harpsichord. The role of critical bands in perception of polyphony is even harder
to imagine. Certainly some tsme-varying information, such as coordinated vibrato in all of the
spectral components of one note, can and does pass through critical bands to provide the basis
for identifying sources. (I am assuming here that critical band phenomena occur before spectral
components are grouped into virtual sources, one for each instrument playing.) Otherwise the
effects demonstrated by Chowning (1980)—in which a voice “crystallizes” out of mass of seemingly
unrelated spectral components when vibrato is applied to a subset of them—would not occur. This
implies that separate spectral components falling within one critical band can still be resolved by
the ear for some purposes. Thus, I decided that it was premature to try to apply constant-Q
analysis to transitions.

Be that as it may, examination of the spectra of several hundred notes has lead me to believe
that some way can be found to gather certain harmonics, especially higher-order ones, into broader
groups than those which I have used here. Typically, the amplitude envelopes of the higher
harmonics—say, after the 24th or so—have an irritatingly similar shape. (Risset [1966] reports
on grouping harmonics, with a single amplitude envelope provided for each group.) More work
definitely needs to be done on this topic. A set of timbre experiments using constant-Q analysis
along the lines of Grey’s work (1975) would be a big step in the right direction—and just might

prove me wrong!

The Wigner Transform: This technique, given a thorough treatment by Claasen and Meck-
lenbrauker (1980), produces a time-varying representation of the spectrum of a signal which can
be windowed to provide on-the-spot control, so to speak, of frequency or time resolution. It did

not prove necessary to invoke this technique for the work described here.
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Other models: Models of sound are implied by a number of synthesis techniques which have
become popular in computer music. For example, there is VOSIM (Kaegi and Tempelaars 1978),
CHANT (Rodet 1984; Rodet et al. 1984), frequency modulation (Chowning 1973; LeBrun 1977;
Schottstaedt 1977; Justice 1979), waveshaping (Arfib 1979; LeBrun 1979), granular synthesis
(Roads 1978), discrete summation formulae (Moorer 1976), and the like. I did not undertake to
analyse transitions in terms of these techniques. Experience has shown that results from analysis

of the generalized additive-synthesis case can be applied to other synthesis techniques.

Analysis of Musical Instruments

The previous section introduced a variety of analysis techniques. Let us now turn our attention

to studies which have applied those techniques to single notes of orchestral instruments.

Steady-state Tones

The work by Helmholtz is the direct modern ancestor of the current study. In his analysis of musical
instrument tones, he explicitly excluded any time-varying parts, although he realized that they play
a role in musical perception (for a discussion, see Strawn 1982). Following Ohm (1843), he decided
that the ear performs a Fourier-style analysis of an instrumental tone, breaking down the complex
waveform into sinusoidal components. The number, frequencies, and relative amplitudes of these
harmonics determine what he called “musical tone color” (musikalische Klangfarbe), meaning
the timbre of a steady-state sound. In general this model and the controversies surrounding it
dominated research into musical sound for the next century or so.

Meyer and Buchman (1931) analyzed vowels, several pianos (also with varying dynamics, with
and without dampers), a Hammerklavier, harpsichord, clavichord, electric piano, harp, zither, lute,
banjo, all the orchestral strings, two kinds of flutes, piccolo, bass flute, two clarinets, tenor and
alto saxophone, contrabass bassoon, bassoon, English horn, oboe, oboe d’amore, some organ pipes,
the usual brass instruments, timpani and various drums, cymbals, tam-tam, castanets, triangle,
glockenspiel, xylophone, tubular bells, and singing saw (!). They used the entire note in their
analysis, but ga\'re only steady-state (line) spectra. This was remarkable work at the time, and
has often been cited (e.g., Winckel 1960).

Von Bismarck (1974a, b) created 35 different signals, some based on filtered noise, some basged

on (filtered) spectra of periodic tones. To measure the timbres of these signals, he used 30 verbal
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scales such as “smooth-rough” or “compact-scattered.” Test subjects were asked to rate each of
the test tones on each of the scales. This is probably the definitive study on the perception of
steady-state spectra.

Time-varying Tones

Backhaus (1932) conducted analyses of the transients in various musical instruments (and speech),
using the improbable apparatus described earlier. He showed (p. 40) that playing just the steady-
state portion of the recordings led to confused identification. Identification was improved if such
features as vibrato, which he found to be characteristic for each instrument, were included. He
examined the attack times of each instrument analyzed, defining the end of the attack as that point
at which energy of the instrument “essentially no longer rises.” (p. 40, my translation). He found
that this attack time was regular for a given instrument across several recordings, and therefore
considered it to be a characteristic of the instrumental sound. Now in all of his recordings, the
instruments started playing from silence; Backhaus assumed that the attack time was quicker
when the instrument was already playing some other note than when the instrument started
from silence. Examining the manner in which different partials enter, he found patterns in those
entrances which he thought to be significant; he assigned verbal labels to the attacks, based on
these patterns. In general, this was pioneering work, and has also been cited frequently.*

LeCaine (1956) wrote an interesting overview of the electric and electronic music at the
time. He emphasized the time-varying nature of musical sound, and showed (p. 465) the attack
waveforms for two different playing styles—on an organ. He also discussed how the attack of a
note might happen on a monophonic instrument.

Winckel (1960) devoted an entire chapter to a discussion of the time-varying characteristics
of musical sounds. Much of what he presented is based on speech or non-orchestral instruments.
Unfortunately, his discussion of instrumental sounds seems to be based on the work of Backhaus.

Still, this is a good review of the state of the art at the time.

*At this juncture I would like to correct an error in a book review which I wrote, and in the book itself. In my
review of Wayne Bateman's Iniroduction to Computer Music, published in Computer Music Journal 5(1), 1981, I pointed
out on p. 71 that the illustrations printed by Bateman (his pp. 80-81) were attributed by Bateman on p. 79 to
Meyer and Buchmann. I questioned whether such dated work was reliable, and pointed out that more recent work
lead to conclusions different from those reached by Bateman based on the figures. It turns out that the amplitude
curves in Bateman’s book are not from Meyer and Buchmann after all but rather from Backhaus, of which there
is no mention in the text nor a citation at the end of the chapter. The trumpet plots on p. 80 of Bateman’s book
are from the lowest part of Backhaus’ figure 20, p. 41, and the violin plots (Bateman, p. 81) are from the left-hand
part of Backhaus’ figure 25, p. 43. Of course my error was unfortunate, but as I pointed out in the review, at the
time I had no copy of Meyer and Buchmann’s article.
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Luce (1963) analyzed 14 orchestral instruments, and presented data on the temporal evolution
of the first eleven harmonics. He found a number of time-varying inharmonicities in the attacks
and steady-states of some tones. His analysis also showed formant effects in some instruments.
Luce’s work, like that of Meyer and Buchmann, is a model of perserverance, and a monument
to the amount of high-quality work which can be done in the face of inadequate equipment and
mathematical techniques.

Luce and Clark (1965) measured the duration of attack transients, and found that they vary
with pitch, performer, and instrument, but not with loudness. They define the attack time as
spanning from the onset of the sound to —3 dB from the steady-state; but they do not specify
how the beginning of the steady-state is determined.

Working with monophonic musical fragments recorded on tape, Risset (1966; Risset and
Mathews 1969) digitized sounds at 10 kHz (12-bit accuracy). They used a quasi-Fourier analysis
performed on a period-by-period basis, and found that the overall spectral curves of the trumpet
vary significantly with amplitude. They also found that higher-frequency partials appeared later
in the attack and disappeared earlier in the decay; also, the lower-order partials built up faster in
the attack. Examining the amplitudes of the attacks, they found a wide variation in attack times,
and observed further that the attack often proceeded in steps; I assume that the pre-attack noise
which they found was tonguing noise. Looking at individual harmonics, they found what I call
“blips” (their term was “hollows”), but could not determine the effect of blips in resynthesized
tones. Most importantly, they created line-segment approximations of the amplitudes of partials,
and synthesized tones from them which turned out to be quite good. Between successive notes,
they found a frequency glide lasting about 0.05 sec.; they presented a few time-domain plots of
some tongued transitions. ‘

Nine instruments were analyzed by Strong and Clark (1967a). They found three groups of
spectral components and discussed the spectra of each instrument in terms of these groups. Using
a modified Fourier method, they synthesized tones on the basis of their analysis data, and f§und
that some of the tones could be identified by some listeners.

In another study, Luce and Clark (1967) analyzed chromatic scales played on 14 instruments—
but with a rest between each note. Two players were recorded on each instrument, for a total of
3100 (!) recordings. These analog recordings were digitized to 11 bits at a sample frequency of
20833 Hz. The amplitudes of 11 harmonics were analyzed using a modified Fourier technique, in
which each successive period was assumed to be stationary; they analyzed the attacks as well as

the steady-states. Their results, based on my experience, were remarkably accurate. For example,
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they found blips in the brass attacks. Furthermore, their observations on the relative entrance
times of harmonics and on the change of frequency during an attack were consistent with what I
observed.

Meyer (1972) approaches a dictionary of analyzed tones. For each instrument of the orches-
tra, he cites research on the instrument and discusses the instrument’s dynamic range, overall
spectrum, and attack characteristics. In discussing these attacks, he sometimes gives some general
observations on the transition between notes, based on research done by others. In many cases he
reproduces the time-domain waveforms of instrumental attacks.

Fifty-seven violin tones at a variety of amplitude levels were analyzed by Beauchamp (1974).
He measured the attack and decay times for individual harmonics, and discussed line-segment
approximations to those tones.

Meanwhile, some interesting work was conducted on the relative importance of attacks in in-
strument identification. Saldanha and Corso (1964) conducted what is perhaps the key work here.
Risset (1966) and Wedin and Goude (1972) also performed studies on this topic (Grey 1975 gives a
good overview). In general, these studies showed that listeners could identify an instrument on the
basis of the attack; but listening to just a segment from the steady-state lead to confusion. From
this work, it is commonly assumed that the steady-state and decay of a tone are less important
in forming the listener’s impression of timbre. This question will be re-examined in Chapter 5.

Grey’s thesis (1975) was a turning-point in the study of the timbre of musical instruments, and
is the direct precursor of the current work. Grey showed that the heterodyne filter was adequate
for analysing time-varying musical tones, including their attacks and decays. Furthermore, he
showed that the detailed microstructure of the amplitude and frequency traces could be omitted
(using line-segment approximations) without significantly degrading the timbre of the tone. He
did find that it was important to retain a certain independence in the frequency traces in order to
avoid an “electronic” or “artificial” percept; and his work confirmed the importance of the attack
in timbre. (Grey’s work on categorical perception will be discussed in Chapter 6).

Returning to the question of delineating the attacks and decays of notes, Moorer (1977)
presented waveforms and spectral analyses of several notes, and discussed the difficulties in finding
the boundaries of the steady-state.

Charbonneau (1981) found that reasonable tones could be generated by simplifying Grey’s

line-segment approximations even further:

1. A normed amplitude curve was calculated from the amplitude curves of the vari-

ous harmonics; for synthesis, this normed curve was scaled to reach the maximum
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amplitude of the original amplitude curve for each harmonic. (This method was
foreshadowed by Luce and Clark [1967].) Also, the original begin and end times for
each harmonic were preserved.
2. The frequency trace for the fandamental was multiplied by the harmonic number. .
3. The start and end times for the amplitudes of the harmonics were approximated by

a polynomial.

Each of these was judged to be quite close but still discernibly different from tones generated
using Grey’s original line-segments (in some cases, Grey’s cut-attack approximation was used).
The timing simplification had the least effect on timbre, with the frequency and amplitude simpli-
fications having increasingly greater effects. He also found that the different instruments reacted

differently to a given simplification.

Physical Properties of Musical Transitions

The musscal properties that fall snto the general area of articulation have not
been studied extensively as to thesr physical correlates. (Howe 1975, p. 29)

Having examined previous work on individual notes, we can now complete this introduction by
discussing a number of studies which have more or less directly examined the transition between
notes.

Most analyses of the physics of musical instruments are concerned with how to maintain an
oscillation and are therefore not much help here. One finds discussions of topics such as how
the driving force interacts with the rest of the vibrating system, how the room reacts with the
instrument, and the like. There is an emphasis on the more or less stable behavior of an instrument.
It is typical that when works on the physics of instruments (Benade 1976 is one example) go over to
discussing successive tones, they immediately switch to reverberation, or tuning and temperament,
without discussing transitions.

If one considers musical sounds as sum of sinusoids, it might be useful to examine the behavior
of a single sinusoid as it starts and stops. Benade (1976, pp. 153-56) analyses the initial transient
of a system driven by a sinusoid as being the sinusoid plus an exponentially decaying sinusoid at
some frequency which is a natural mode of vibration of the driven system. At the other end of
a note, it is common to think of the decay of musical tones as a superposition of exponentially

decaying sinusoids.
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Benade also analyszes the startup of a brass tone in some detail. Of interest here are his
comments that “[aJssuming the player has buzzed his lips accurately for the desired note, the air
column is happy to begin collaboration as soon as there has been time for the initial sound to
make at least one complete round trip of the air column. Several more round trips are required
before the regime of oscillation has set itself up completely. In a fast running passage, there is
barely time for one regime of oscillation to be set up before it must give way to the next” (1976,

p. 425).

Acoustical Studies Spanning more than One Note

Spectrographic Studies: In the largest non-computer study of musical sound that I have en-
countered, Rosing (1967) used the Kay Sonograph to analyze many orchestral instruments (violin,
viola, cello, bass, flute, piccolo, clarinet, oboe, bassoon, trumpet, horn, tenor trombone, and tuba)
as well as various percussion instruments. He also examined gagaku (a type of Japanese ensem-
ble music), gamelan (the music of Indonesia), and other oriental works. All of his recordings
were taken from phonograph records, with the individual instruments coming from DG 13910
(Musskkunde in Beispielen).

Rosing found characteristic attack times for each instrument, and discussed how his differ from
those of Reinicke (1953) and Backhaus. Following the tradition of assigning verbal attributes to
timbre, he gave qualitative judgments about various kinds of transitions: quick, raw, smooth, that
sort of thing.

Examining the attack of notes, he found that many were “noiseless”, by which he meant that
inharmonic components were absent; for example, he found this to be the case with the flute. Now
my experience leads me to conclude that there is considerable inharmonic activity in the attacks
of notes, especially the flute. I attribute this anomaly in Résing’s data to the lack of resolution
in the Kay Sonograph. Rdsing noted further that a dip in amplitude in the middle of a note is
simultaneously accompanied by a spectral rolloff. The amount of rolloff that he observed there
is surprising. Again, I attribute this artifact in the analysis output to the limitations of the Kay
Sonograph; in this case, I believe that the limited dynamic range of the analyzer caused some
weak higher-order harmonics to simply disappear.

Even more interesting for the current study is Résing’s analysis of musical transitions. In
contrast to earlier work, he felt (pp. 27~28) that “in the course of musical events the attack (i.e.,
the start of sound from a state of rest) and the decay (i.e., dying out to a state of rest) [...] have

little meaning. In the melodic continuum there is rarely a complete attack or decay; rather, there
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are places where the pitch changes, i.e., [places where the instrument] changes from one state of
vibration to another. Backhaus discussed this, and presumed ‘that the change to the new state of
vibration happens then [i.e., in a transition] more quickly than when the sound is generated from
rest.” This assumption was in general confirmed” in his work.*

Continuing his analysis, Résing found three phases in a transition (p. 28):

1. Phase of preparation for the change in pitch.
2. Phase of the transition between pitches.

3. Phase of the formation of the (next) note.

Phase 1 occurs at the end of the decay of one note; phase 3 at the beginning of the attack of the
next, with the three phases perceived as a single unit. He found that in each instrument the
total duration of the transition as well as the relative lengths of individual phases had distinctive,
“near constant” (p. 28) characteristics. He decided that these affected the subjective impression
of the transition, mentioned earlier.

In general, he found that the spectrum of the steady-state was not affected by the changes in
the spectrum during the transition. Contrary to the observations of Raman (1918) and Backhaus,
he found that in all instruments the strongest components always enter first, to be followed by
the weaker; and the weaker components are the first to decay. Reverberation might be in part
responsible for this in the decay. He found that reverberation made it difficult to decide where
the exact point of transition falls: if the second note is separated right at a supposed transition
point, and then played, the end of the first note would still be heard in the reverberation left in
the recording. Be that as it may, he found in the transition “a wedge-like funnel, open toward the
higher frequencies,” in the spectrum at the transition (p. 36).1

Turning now to specific instruments, Résing found four kinds of transitions in the violin:

*“Innerhalb des musikalischen Geschehens haben [-..] die Ein- (Anklingen aus dem Ruhegustand) und Aus-
schwingvorginge (Ausklingen bis zum Ruhestand) wenig Bedeutung. Im melodischen Kontinuum kommt es nur
selten zum vollen Ein- bzw. Ausschwingvorgang, sondern zu Tonwechselvollziigen, d.h. dem Wechsel eines
Schwingungszustandes in einen anderen. Darauf hat bereits Backhaus hingewiesen und vermutet, ‘daB dann der
Ubergang in den neuen Schwingungsgustand schneller erfolgt, als wenn der Klang aus der Ruhe heraus erzeugt
wird.! Diese Annahme wird generell bestitigt.” The translations of the next few German passages are all mine.

Tl. Phase der Tonwechselvorbereitung; 2. Phase des Toniiberganges; 8. Phase der Tonbildung.

I“Bei fast jedem Tonwechsel verschwinden die hGheren schwachen Teiltonkomponenten des Spektrums, und zwar
um so eher, je schwiicher sie sind. Entsprechend dauert es auch um so lénger, bis sie nach dem Tonwechselvollzug
wieder auftreten. Es entstcht ein keilartiger, 2u den hohen Frequengen hin getfineter Trichter.”
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1. Legato. As an example of a legato transition, he cited an excerpt from m. 55 of
the first movement of the Beethoven Violin Concerto, in which “[a] small reduction
in intensity and a lessening of the vibrato (if any is present at all) occur before the
change in pitch. The transition to the new note is seamless; the new note arises
directly from the old, and reaches the required pitch only after about 0.004 sec. The
total amplitude [during the transition| varies only slightly.” (p. 55)*

2. Glissando, a transition whose nature is implied by its name.

3. Normal. I assume that this is a transition with bow change. R3sing says that in this
kind of tramsition, “[t]he notes are clearly separated from each other; the change
in pitch happens with a jump. Usually the preparation for the change in pitch
manifests itself in the form of a reduction in intensity, which results in the removal
of the weaker spectral components and a light reduction in the overall amplitude.”
(p. 35)f

4. Staccato, i.e., total separation of the notes.

Examining his analyses of the trumpet, Résing found differences in the amplitude dip between
notes for different kinds of articulation. For a legato transition, he found that the total amplitude
remained almost constant (p. 87). However, he found a large jump in amplitude associated with
what he called the “normal attack,” which I interpret to be the tongued manner of performance.

The computer-based successor to this study is that by Cogan (1984), which reached me after
my work was finished. Although I find many of his comments about the nature of music to be
overextended, his work needs to be mentioned here. The book presents spectrographic plots of
entire musical works. In such plots, the resolution is not adequate for analysis on the detailed scale
attempted here. Even though Cogan does not discuss the transitions between notes in general,
he points out a certain correspondence between playing styles (e.g., bowed vs. pizzicato) and the
overall shapes on his spectral plots. Still, his work is of relevance to this study because, in some
plots (e.g., in the Webern example, p. 63), what appears to be pitch jumps between notes can be

seen.

*Vor“dem Tonwechsel tritt eine schwache Intensititsreduktion und Dimpfung des Vibratos (sofern vorhanden) ein.
Der Ubergang zum neuen Ton vollzieht sich nahtlos, der neue Ton geht sachte aus dem alten hervor und erreicht erst
nach etwa 0,004s. die eigentlich geforderte Tonhéhe. Die Gesamtamplitude unterliegt nur leichten Schwankungen.

T“Die Téne sind deutlich voneinander abgesetzt, der Tonwechsel geht sprunghaft vor sich. Die Tonwechselvorbe-
reitung macht sich meist in Form einer Intensititsreduktion bemerkbar, die den Abbau der schwiicheren Teilton-
komponenten und ein leichtes Schwanken der Gesamtamplitude bewirkt.”
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Timbre in Musical Contexts: Using the clarinet, trumpet, and bassoon, Grey (1978) studied
the influence of musical context on the perception of timbre. Test tones were synthesized from
complete heterodyne filter analysis data, or from line-segment approximations. The sets of resyn-
thesized tones were optionally changed in the middle of a musical passage consisting of one or
more lines. Listeners were asked to determine if the two halves of the passage were played by
the same instrument. In general, Grey found that with the clarinet and trumpet in polyphonic
contexts, the judgements were not as reliable as those for monophonic settings; the results for the
bassoon were different. The resolution of that dilemma is not of interest here; but his results do
serve to point out that detailed differences in timbre which may be audible in isolation may well

be lost in real musical contexts.

The Legato Transient: Let us return, then, to the importance of the attack already mentioned
in the discussion of single-note studies. Campbell and Heller (1978) analyzed analog recordings
of six instruments (clarinet, flute, oboe, piano, trumpet, and violin) playing the interval F349 to
A440. In addition to the usual attack, steady-state, and decay sections of a note, they identified
a legato transient, defined as “the transition between two notes in a legato passage played on a
continuous tone instrument. It is initiated when the performer interrupts an existing standing
wave and ends when a new standing wave has been established” (p. 1). The four regions (attack,
steady-state, decay, legato transient) were spliced apart with voltage-controlled amplifiers and
triggers from a Moog synthesizer. They found that subjects could identify instruments better
from the legato transient than from using the attack transient alone. Although their work does
not contradict what one would expect, it should not be accepted without reservation, due to
the possible limitations of their equipment. (The work of Cutting and Rosner [1974] ultimately

suffered from the use of the Moog synthesizer as a signal processor—see Chapter 6).

Registers: The role of registers is closely related to this line of research.

For example, the clarinet range is traditionally divided into several registers with names like
chalumeau and clarino. Benade (1980) discusses the register changes in the clarinet, and presents
a recorded example of a skip in registers using an interval of a twelfth. Limacher (1979) analyzed

eight clarinet tones and came to these conclusions (pp. 16-17):

The lower even-numbered partials are consistently weaker than the corresponding
odd-numbered partials in the chalumeau register. The second partial is especially weak in

the notes of the chalumeau register. However, in the clarino and extreme high registers,
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the second partial becomes relatively strong. The higher even-numbered partials don’t
exhibit any consistent relationship to the odd-numbered partials. They are sometimes
weaker, sometimes stronger and often just as strong as the odd-numbered partials.

As to the difference between registers, I can see no sharply defined distinctions. The
chalumeau register appears to exhibit fairly strong first and third partials, along with
a very weak second partial. The only generalization I can derive from the two clarino
register tones is that the second partial is stronger than in the chalumeau register. The
extreme high register exhibits a very strong first partial. The second partial is stronger

than the third. There are few partials of consequence in the extreme high register.

Working with the meszoforte recordings of isolated clarinet tones prepared at IRCAM, I
examined Fourier analyses of the steady-state of clarinet tones from D3 through A}6, at every
chromatic step. There are certainly differences in the spectral envelopes between the high and
the low ends of the clarinet range. However, I did not find any noticeable change in the spectral
envelope at or near the traditional boundaries for the clarinet registers. Perhaps this is a measure
of the clarinettist’s success in bridging these register boundaries.

In the current study, I did not encounter difficulties due to a change in registers on the clarinet
or any other instrument, and so this topic will not be considered further here. Still, more work

needs to be done on this question.

Reverberation: As for the effect of reverberation, Meyer. (1972) discusses the performance of
articulation in a real hall, and presents (pp. 210-11) a plot showing how even in staccato violin
passages (Mozart Symphony K. 319, first movement) the amplitude between the notes at the back

of the hall can be smoothed by reverberation.

Auditory Streaming: Considerable work has been done on the question of how the auditory
system groups simultaneously sounding spectral components; McAdams and Bregman (1979) give
a good review. In general, streaming can be asumed to happen for the cases examined in the
current work; “degenerate” cases (not meant in a pejorative sense), such as those covered by
Steiger and Bregman (1981), are not likely to occur and were in fact not encountered. Thus,
a close examination of issues in streaming is not necessary here. It is of interest to note that
streaming is more likely to occur when the pitch trajectory at the end of one note matches the
pitch trajectory at the beginning of the next note; I have found some evidence that this occurs

almost naturally in performance on orchestral instruments (see the frequency plots in Appendix 5).
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Melodic Studies: There is a large body of work on the performance and perception of melody,
some of it dealing with higher-level cognitive or aesthetic issues and none of which will be dealt
with here, as it is not relevant for the current discussion of transitions. The contributions in
(Deutsch 1982) provide a good starting point for those interested in this area.

Seashore (1938, pp. 200-203) reproduced analyses by Small of two performances of Ave Maria
on violin. Both a pitch curve and an amplitude curve were shown. Seashore noted a characteristic
drop in amplitude for transitions with bow change, but did not remark on the amplitude behavior
without bow change. The amount of tremolo registered in the amplitude traces was as great as
the dip in amplitude that I have come to expect at a bow-change transition. Seashore did remark
that differences in amplitude dip “indicate a characteristic difference in bowing.” He also found
that some notes begin with “a clean attack in pitch.”

In a study of phrasing, Morrill (1980) recorded trumpet melodies; every note in the melody
was tongued (Morrill 1982). From the graphs of amplitude envelopes (which of course included the
amplitudes of the transitions), he found that there was an overall phrase envelope which modified
the middle section of the amplitude envelopes of individual notes.

Beauchamp (1981) included a preliminary report on synthesizing a melody—a two-bar Mes-
siaen passage for solo clarinet—using his brightness matching technique (a form of waveshaping).
The resynthesis involved eight time-varying amplitude traces plus a single frequency trace.

Dolson (1983, p. 107) presented an analysis of one legato transition played on the violin (see
the figure on his p. 105); the pitches were apparently the second G and Ab above middle C. Dolson
showed the output of the channel of his tracking phase vocoder which is following the fundamental.
He found “slowly decaying amplitude and frequency modulation” in the attack of the new note,
lasting about 300 msec, which he ascribed to the effects of room reverberation (causing the notes
to overlap). He conjectured that legato transitions might be “effectively simulated with simple
overlapping.” During the transition, it was hard for his technique to track the higher harmonics;
the reasons will become clear in Chapter 2.

Sundberg et al. (1983, p. 39) found that “[ijn instrumental music, particularly that played on
bowed instruments, wide melodic leaps are often performed with a very short pause just between
the two tones.” Although they presented no research to support this assertion, this corresponds
to the well-trained musician’s “common-sense” feeling for bridging a large gap; but I will show in
Chapter 2 that this may not be as pronounced in the physical signal as one would have hoped.

Gordon (1984) studied the perceived attack time of musical notes. In particular, he synthe-

sized a musical sequence (Twinkle, Twinkle, Little Star) with tones played on several different
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instruments, each with different physical attack time. Working with the results of his research
into perceived attack time, he was able to arrange the physical onsets of the notes so that they
were perceived to fall in a regular rhythm. However, he was not concerned with the transition
region itself; any overlap between consecutive notes was coincidental.

That leaves the study by Mathews and Miller (1982), which dealt with the effects of length
of splice, abruptness of attack and decay, and abruptness of pitch change between notes, on a
listener’s judgments of slurring. Their study used artificial stimuli with simple linear attacks and
decays, and its emphasis was on producing a slurring effect. Its implications for the current study

will be mentioned later in this document.

Overview of the Current Study

Scope

It should be clear from the foregoing that a number of issues surround the exploration of sound
in musical contexts. The current study will be limited to work with common non-percussive
orchestral instruments. The only analysis techniques applied will be a form of the phase vocoder
as well as a form of power measurement, both to be discussed in Chapter 2.

As a trustworthy set of recorded transitions was not available when this study commenced, a
set of recordings was made and analyzed; the results are also presented in Chapter 2.

At the same time, it must be emphasized that this is a study of the physics and perception
of transitions, but not a study of articulation. It should be clear from the foregoing that a player
can use a variety of performance techniques to achieve a variety of perceived articulations. This
study will not attempt a definitive statement of what makes a bowed transition sound different
from a transition with no bow change. To be sure, much information on these differences will be
presented, but the goal here in such cases is to demonstrate what makes it possible for the listener
to tell apart two separate articulations, and not to demonstrate how to synthesize specific playing
techniques.

Initially, the attack-steady-state-decay model will be adequate for modeling individual notes;
a monophonic phrase will be modelled as a concatenation of such notes. Incidentally, this study
will not examine a melodic fragment consisting of two notes on the same pitch; this is a subject

worthy of a study by itself. There will be no attempt to examine differences in performers, tempi,
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or dynamics, nor to examine the differences due to the quality of the instruments used, different

fingerings for same pitch on a given instrument, formant effects, and the like.

Organization of this Document

Chapter 2 discusses the transitions which were recorded, and presents an initial analysis of them.
Some plots are given there of the power and time-varying spectrum of transitions; the plots in
Appendices 4 and 5 complete the set. A number of informal studies and formal experiments are
given in Chapters 3~6. Chapter 7 summarizes the results. Certain methods which were developed
in the course of this study, such as for amplitude scaling, are presented in Appendices 1 and 2.
Appendix 3 presents details of experimental procedure which may be of interest to the reader but

which are not necessary for explaining the focus and results of the experiments.



CHAPTER 2

ANALYSIS OF PHYSICAL PROPERTIES OF TRANSITIONS

This chapter presents a generalized framework for specifying transitions. Then the process of
recording transitions played on various instruments is outlined. Based on analysis of changes in
amplitude, power, and spectrum in the transitions, a representative set of transitions is selected,

upon which the experiments of Chapters 3—6 will be based.

Parameters of a transition

The discussion in the previous chapter showed that there is no general agreement on what con-
situtes a transition. As a step toward defining a transition (which will happen near the end of
this chapter), it will help to list the parts of a transition that might be subject to variation in
controlled experiments. Figure 2.1a shows a simplified view of the time-varying amplitude in a
transition, following the tentative definition of Chapter 1 (the reason for the choice of letters will
soon become clear). The line AB is the steady-state of a note, BD is the decay. The actual
transition happens at some point E in the general area DF. To simplify terminology, I propose to
adapt Résing’s term Tonwechselvollzug, calling point E the point of pitch change. (In general, I
found that E lies just before F.) This contrasts with the longer transition, which includes at least
DF and at most BK. The attack of the second note spans FJ, with a steady-state reached at K
and continuing to L and beyond.

Even a cursory examination of actual transitions will show that this model does not suffice
in many cases. As shown in Figure 2.1b, the decay BD is often convex or concave. Even more
complicated shapes are of course possible; for example, BC may be convex and CD concave, or
there may be a sort of “plateau” at C. The reader may wonder that the segment BD is not
an exponential decay, as acoustical theory would suggest. There are several reasons for this.

Not only is a theoretical exponential decay modified by irregularities in the instrument and by
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b)

Figure 2.1. Amplitude during a transition. a) simplified model. b) More detail added to decay of first
note and attack of second. c) Possible perturbations in attack of second note.

reverberation in the room, but the player may also continue to add energy to the vibrating system
in the instrument. Likewise, the attack FJ may be more complicated than a straight line; FJ may
be concave or convex, and a plateau may be found at H. In fact, the attack in some instruments
may include characteristic features. Figure 2.1c shows a simplified version of the “blips” (G)
commonly seen in brass attacks, already mentioned in Chapter 1. There may in fact be several
blips in such attacks.

Consider, then, the decay of the first note. The parameters necessary for specifying this part
of the transition include at least the amplitude levels of the breakpoints, the ;shapes of the lines
connecting them, and the amounts of time between adjacent points.

The spectral characteristics also need to be determined. Do some harmonics drop out? If so,

do they drop out in synchrony with each other? If they roll off asynchronously, is there a pattern



30 Chapter 2

to be found? Is that pattern perceptually significant? Does the excitation source continue to
supply energy through, say, BE? Are there resonances that ring in that region?

Does the amplitude at DF reach 0.07* What is the shape of DF: a line, concave, convex, or
irregular? Where within DF does E fall? Is there a discontinuity at E, or is the crossover smooth
from one state of vibration to the next?! How long does this changeover take—that is, how much
of EF appears to be unstable? Indeed, can DE and EF be characterized as periodic signals? Are
there blips, bumps, grinds, wheezes, or other artifacts in DF? If so, of what shape, how large, and
how long are they?

In the spectral domain, do some harmonics “persist” through DE? If so, is there any charac-
teristic pattern determining which ones persist? How do their amplitudes change? How are the
frequency traces joined at E, and do they move in synchrony with the amplitude traces? Are there
specific spectral cues, such as pre-attack noise?

The parameters isolated for the decay of the first note also apply to the attack of the second.
The position of any blips relative to the entire attack can be investigated. In addition, one often
finds an “overshoot” in the area JK; if so, its amplitude and duration might be of interest.

Finally, there is the general relationship between the two notes. Is there a connection between
the shapes of the decay and the attack, or between any spectral changes which might occur in
them? How are the attack and decay times related? What about the overall amplitudes of the

two notes: Are they the same, and if not, how does that affect the transition?

Recording Sample Transitions

Enormous difficulties were encountered in making this system operational.
(Luce 1963, p. 42)

To answer these questions, it is necessary to examine recordings from a wide variety of instruments—
the answers to these questions might vary from instrument to instrument. For example, I would
not expect to find “blips” in the attacks of string instruments; and the size of the instrument

might affect the rate at which a note dies away.

* {Grey (1975, p. 110) quotes Moorer’s discussion of these two questions. Neither Moorer nor I can find Grey's
quotation in Moorer’s thesis, which Grey cites with the date 1974; maybe someone else can find the passage. Or,
since the correct date for Moorer’s thesis is 1975, perhaps Grey’s quote came from an earlier version.
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From 1979 through 1983 I recorded transitions played on nine instruments at CCRMA: flute,
piccolo, bass flute, clarinet, oboe, bassoon, trumpet, violin, and cello.* Some trombone recordings
were also made, but were ultimately not analyzed here, for reasons which will be given presently.
It seemed wise to select at least one instrument from each of the traditional families of orchestral
instruments (wind, string, brass). Among the wind instruments, at least one from each kind of
reed (air, single, double) was included. The reasons for selecting small and large instruments in
these families will be discussed later.

Each player was recorded in a room measuring approximately 20’ by 24’ at CCRMA.! The
walls were treated with absorbent material to reduce reverberation in the room. Its isolated
location made it adequate for undisturbed recording.

Some recordings were made directly onto the mainframe computer using the 14-bit DACs
installed on the PDP-10 of the Artificial Intelligence Laboratory, which occupied the building at
the time. This recording setup is discussed in the earlier version of (Moorer 1977). The remaining
recordings were digitized directly (16-bit) using a Sony F'1 recorder; these recordings were digitally
transferred into the CCRMA Foonly computer and stored on disk. For some recordings, I used
a B&K 2619 microphone, and a Crown PZM for others. All of the recordings were resampled
to 25.6 kHz, which seemed (and proved) to be low enough for practical work but high enough
to ensure adequate fidelity. There were some low-frequency artifacts in the recording, such as
a DC component, which were removed by high-pass filtering the recordings, typically with an
8th-order Butterworth filter with —3 dB point at 50 Hz or so. The recordings were spliced apart
into individual (monaural) files, each containing a two-note segment.

The noise level of the recordings turned out to be around —60 dB. Given the theoretical limits
of 84 dB (for the 14-bit DAC) or 96 dB (for the Sony 16-bit DAC), this may seem surprising.
However, monitoring amplitude in the direct-to-computer-disk method (discussed in the earlier
version of Moorer 1977) was clumsy at best, so recording at close to full amplitude was ill-advised;
and experience with the trumpet showed that the “overload” light on the Sony F1 recorder was
not as reliable as one needs when working with very tight headroom. Thus, the trumpet recordings

were clipped in a few places in the steady-states of the tones (not in the transitions). Fortunately,

*The help of the following performers is gratefully acknowledged: Yvonne Kendall, Emily Bernstein, David
Burkhardt, James Matheson, Angela Sohn, Gregory Dufford, Leland Smith, Dexter Morrill, David Jaffe, Chris
Chafe, Stephen Harrison, and Pat Spurling.

TThis room, variously known as “the recording studio,” “the piano room,” and “the pit,” was the same room used
by Borish (1984); the equipment shown on p. 42 of his thesis led to the name of “the dungeon.” Many of the

experiments by Grey and Gordon were also conducted in this room.
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Table 2.1. Instruments Recorded.

Base

Family Instrument Pitch
Air Reed Flute A220
Piccolo A1760

Bass flute A220

Single Reed Clarinet A220
Double Reed Oboe A440
Bassoon A220

String Violin A220
Cello A220

Brass Trumpet A220

the clipping lasted for only two or three samples each period. I was able to remove the clipping
by low-pass filtering the recordings before doing the downsampling. Still, this warned me against
trying again to exploit the full dynamic range of the F1; for the other recordings, more headroom
was alotted, with a resulting reduction in dynamic range. This posed no further problems in any
of the work presented here. In particular, the transitions all lay well above the noise floor, as will

be shown in Table 2.2.

The Choice of Intervals

As discussed in Chapter 1, “common sense” suggested that the transition for a narrow inter-
val might be different from the transition in a wide interval. Also, it seemed reasonable that a
descending interval on an orchestral instrument might operate differently from an ascending inter-
val. For example, with the oboe and bassoon, Forsyth (1936, p. 236) says that their “best slurred
skips—that is to say, slurs merely between two notes as opposed to extended legatos—are those
taken upwards. This point, however, is not of great importance unless the skips are very wide.”
The following intervals were finally selected: major second (M2), major third (M3), perfect
fifth (P5), minor seventh (m7). All four intervals were recorded ascending and descending.
Following the lead of Grey’s work, it seemed wise to record as many instruments as possible
playing the same pitches. This might make cross-instrumental comparisons easier; but proved
to be impossible for the full set of the instruments listed, as their normal playing ranges do not

overlap. The next best solution was to have many of the instruments play the same pitches, and
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Figure 2.2. The ascending (top staff) and descending (bottom staff) intervals recorded. For some
instruments, these notes were transposed up one or more octaves. (Typeset by Amnon Wolman using
Leland Smith’s MS music printing facility).

to have other instruments play an octave above or below. Another constraint was to avoid open
strings on the string instruments; all pitches were to be played on stopped strings. In the end,
the “base” pitches given in Table 2.1 were used for each instrument; that is, these were the lower
notes for both ascending and descending intervals. Figure 2.2 shows the complete set of intervals
(based on A220).

The Choice of Articulations

It was also necessary to choose more than one style of articulation for each interval. For the
stringed instruments, articulating with or without bow change was the obvious choice. Likewise,
with the woodwinds and brass, playing with or without tonguing would be adequate, it seemed.
But experience in recording sessions with the musicians showed that the choice was not so
clear, as the readings cited in the last chapter had warned. One of the trumpet players whom
I recorded stated explicitly, “It’s possible to create the illusion of a slur with the ‘ta’”, where
“ta” is the syllable which produces the most pronounced tonguing. To give another example, the

following dialogue spontaneously took place during the recording session with the oboist:



34 Chapter 2

[Strawn]: ... And there’s still quite a good gap there.

[Oboist]: Well, I was gapping it somewhat; it’s sort of a quasi-separated legato. I was
experimenting with the attack in there aways. Now let me see if I can blend
it clear in. (plays)

[Strawn]: (surprised) That was tongued?

[Oboist]: (plays) That one is there. The other one ... you can get so it’s light enough
you don’t hear it. You have to sort of back off from that in order for it
to sound articulated. Let me give you another example. (plays) That was
tongued there. In one way, if you coincide it right on the nose when you’re
shifting to the new note and without the break in the middle, you can sort
of hide it in the shock of the changed pitch.

[Strawn]: Even though you’re tonguing?

[Oboist]: Yeah, yeah, to a certain degree.

[Strawn]: Some other instrumentalists have told me the same thing about their instru-
ments too.

[Oboist]: Well, some are easier than others. It’s mainly an individual ability, whether
they develop it or not, or whether the schooling they had emphasized that
to one degree or another. But it’s not that hard to get to the point where it
sounds slurred.

[Strawn]: Even when it’s tongued?

[Oboist]: Yeah, even though it’s tongued.

I thus instructed the performers to play a normal tongued transition, without trying to “hide”
the tonguing; and to contrast this with a normal, untongued legato. The same was true for the
strings, with and without bowing. Thus, all eight intervals in Figure 2.2 were recorded twice, with
two different articulations. It is important to remember that this provided a “quick and dirty”
method of obtaining two articulations which are well-known in the musical community, and which
can be distinguished easily; but the goal of this work does not include trying to specifically model
the method of performance.

To simplify matters in the rest of this document, “tonguing” (abbreviated T) will be under-
stood to include the performance “with bow change” on the string; and “untongued” (U) also

includes performance “with no bow change.”



Analysis of Physical Properties 35

Equalizing the recordings

All of the recordings were equalized in amplitude so that the stronger of the two notes reached
an amplitude of 75% of full scale. This was a nice round number to work with, allowed some
headroom for later experimentation, but used a goodly amount of the dynamic range available.
Grey (1975) equalized his test tones for loudness, duration, and pitch. It proved impossible
to equalize my two-note recordings along these lines. In order to equalize the recordings for pitch,
the notes would have to be treated separately—which would destroy the very transitions to be
examined. Given the variety of shapes and sizes in the transitions, as discussed in the beginning
of this chapter, it was also impossible to find a way to equalize, say, the loudnesses of the tongued
transitions, without again distorting the transition as recorded. Therefore, each instrument is
studied first by itself. Still, the lack of an equalized set of recordings will not rule out making

certain cross-instrument comparisons, as will become clear in later chapters.

Recorded Transitions

A sample set of transitions is shown in Figures 2.3-2.8. Each two-page spread contains amplitude
plots for one instrument: the clarinet, trumpet, and violin are shown. On the left-hand page,
there are four tongued intervals (three for the clarinet, as the ascending seconds were lost); the
right-hand page shows the same intervals, played without tonguing. For the clarinet we thus
have, from the top, major third, perfect fifth, and minor seventh. In each case, the decay of
the first note is shown at the left, followed by the transition, then the attack of the second
note. Amplitude is plotted on a linear scale, with 1.0 representing the full 15 (positive) bits
available. Time is shown in seconds; each plot shows 300 msec. The “waves” in the clarinet
recordings are artifacts of the display process and should be ignored; they disappear when a
smaller time range is displayed. The trumpet has the same intervals, plus the major second.
Only ascending transitions are shown for these two instruments. A smaller time range is shown
for the trumpet in order to avoid certain artifacts in the display. Since the larger two intervals
were not analygzed in the strings, the violin transitions shown here include the major seconds
and thirds, both ascending and descending. The time range shown varies from 100 to 200 msec.

(Text continued on p. 42)
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Figure 2.3. Tongued transitions between two notes on the clarinet. The lower (first) note is A220 in
each case. From the top: ascending third, ascending fifth, ascending seventh.
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Figure 2.4. Untongued transitions between two notes on the clarinet. The lower (first) note is A220
in each case. From the top: ascending third, ascending fifth, ascending seventh.
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Figure 2.5. Tongued transitions between notes on the trumpet. The lower note is A220 in each case.
From the top: ascending second, ascending third, ascending fifth, ascending seventh.
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Figure 2.6. Untongued transitions between notes on the trumpet. The lower note is A220 in each
case. From the top: ascending second, ascending third, ascending fifth, ascending seventh.
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Figure 2.7. The transition between notes on the violin, played with bow change. The lower note is
A220 in each case. From the top: ascending second, descending second, ascending third, descending

third.
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Figure 2.8. The transition between notes on the violin, played without bow change. The lower note is
A220 in each case. From the top: ascending second, descending second, ascending third, descending
third.
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The General Nature of Musical Transitions

The conclusions in this section are based on the plots shown in Figures 2.3-2.8 as well as on similar
plots, not reproduced here, for the other instruments recorded.

There is a characteristic drop in amplitude between the two notes surrounding a transition, as
one would expect. This turned out not to always be the case for the cello, which will be discussed
in more detail later.

The tongued case often exhibits a wider gap between the two notes, and a greater dip in
amplitude, than for the nontongued case. To answer Moorer’s question quoted earlier in this
chapter, in no case did the amplitude between notes for the tongued case fall into the noise level
of the recordings (in other words, drop to 0); this may be due in part to room reverberation. (One
would not expect such a large drop in amplitude for the untongued case, nor did such a drop occur
there).

The amplitudes of the two notes are sometimes quite different. The descending major third
with bow change at the bottom of Figure 2.7 is one example, although the difference may be
difficult to see in the plots given here; the power plots in the next section will make this clearer.

The decay time of the first note is often different from the attack time of the second note.
Indeed, as was anticipated in the discussion earlier in this chapter, the attacks and decays often
include a short “plateau;” see, for example, the attack in the tongued ascending fifth played
on the clarinet (second from bottom, Figure 2.3), or the decay in the ascending fifth in the
untongued trumpet (second from bottom, Figure 2.6). Some instruments showed a swelling on
some notes, such as on the ascending third played with bow change on the violin (Figure 2.7,
second from bottom). Some transitions, like the ascending second at the top of the same figure,
show “shoulders” in the decay (or the attack); these will be modelled explicitly in Experiment 5.
Only some of the decays follow the exponential path which one would expect; the tongued clarinet
tones in Figure 2.3 are perhaps the “closest to theory.” The reasons for this non-exponential
behavior have already been given.

Although the amplitude plots are unclear in this matter, the change in pitch can be shown
to occur at the earliest in the middle of the transition, and sometimes right at the attack of the
second note. In none of my recordings did the change in pitch occur during the decay of the first
note.

The tongued transition in the woodwinds and brass has, as one might expect, a small amount
of noise right at the attack of the second note; this is easier to see in the trumpet plots than in

the clarinets. In the strings, one might expect “bow change” to produce a more abrupt attack on
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the second note; certainly some bow noise can be seen in the plots given here. However, the “no
bow change” performance produces its own abrupt attack on ascending notes, because the finger
“thwacks” the string to make it shorter, producing a characteristic sound which is probably not
noticed by any listener in a real listening environment (see point A in Figure 2.8). A microphone
near the instrument picks up this sound, of course. Still, this “thwack” is not prominent enough
to allow the analyses presented later to distinguish between the ascending and descending cases,
go it will not be considered further here. It would have to be taken into account if one were
attempting to model specifically the “no bow change” playing style. In general, I found at least
a little bit of noise in all the attacks; this is contrary to what Rosing observed. Probably the
frequency resolution and dynamic range of the Kay Sonograph were not adequate to make this
noise visible in his plots. Also, I often found the noise in the very high frequency ranges, which
may have been off the scale of what was available to Rosing.

The transition from one pitch to the next occurs very quickly. In nontongued cases, one can
often follow the peaks of the periods of the first note forward, and the peaks of the periods of
the second note backward, until they overlap for just a few periods. Some of this overlap is no
doubt due to room resonance, as others have noted. In other cases a few unstable “periods,” the
periodicity of which cannot be tracked easily, suffice for the transition. A good player can thus
make the transition between notes in the time required for just a few periods; this matches well
Benade’s remarks, quoted earlier, about how the instrument can quickly reach a stable state of
oscillation. At the same time, it shows the difficulty of pinpointing exactly where the point of
pitch change lies.

The situation is not so simple, of course, when the player purposefully includes noise, such
as can be seen in some of the violin plots. Thus, we can only offer a partial answer to Moorer’s
question about whether a discontinuity occurs. In smooth, more-or-less noise-free transitions,
a discontinuity does not have to occur; many of the transitions shown here do not exhibit a
discontinuity. The question of discontinuity in the midst of noisy transitions will not be examined
further here.

Analysis of Time-varying Power in Transitions

It is misleading to base detailed analysis of time-varying signals solely on amplitude plots such
as those just given. The waveshapes produced by musical instruments can vary widely, so that

the peak values of successive periods are not a good measure of loudness. When a new note
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starts on an instrument which is already vibrating, a large “phase shift” can occur between the
notes (see, for example, the ascending third in Figure 2.8, second from bottom). Furthermore, the
positive-going peak excursion is significantly different from the negative-going in some recordings.
Another measure of the signal’s amplitude is therefore needed. RMS power is widely used; but
here a time-varying measure is called for.

To this end, I adopted an algorithm developed by Smith (1984), which identifies the peak
of each period in the waveform (see also Hutchins 1975). It was possible to tune this algorithm
so that it worked for both notes and the transition in almost all of the recordings. In some
cases, however, the results had to be adjusted by hand (Beauchamp [1981] also had to correct his
frequency estimates by hand). For this, a special software editor had to be written (this was a
variant of the cursor-based editor described in [Strawn 1985a]). Those working with other period-
driven algorithms, such as tracking phase vocoders, might find this approach useful. I should
mention in passing that this algorithm sometimes worked better with an inverted signal (which
of course sounds identical to the original); Risett (1966, p. 7) had similar experiences with his
peak-detection algorithm.

After the period peaks have been identified, the power of the signal can be calculated on a
period-by-period basis according to

Pl = S 470
T() & °
where T'(n) is the length of a period (peak-to-peak) beginning at sample number n and y(t) are the
samples in the recording. P(n) is thus measured once per period. I call this period-synchronous
power, contrasting it with various well-known pitch-synchronous measures.

All of the recordings were analyzed for period-synchronous power. Figures 2.9-2.14 show
time-varying power plots for the two-note pairs given in Figures 2.3-2.8; the power plots show the
entire two-note recording in each case. All of the power plots are shown on a 60 dB scale. (The
plots given here for the tongued trumpet agree well with those given in Morrill 1980). To facilitate
comparisons, the layout of these power plots matches exactly the layout of the earlier amplitude
plots. Appendix 4 contains power analyses for some of the other the instruments recorded, except
for the cello and flute, which will be presented later in this chapter.

The plot of the attack of the first note and the decay of the second note should not be taken
literally in these figures. For example, in the fifth shown in the middle of Figure 2.9, the line
sloping downward just before the first note actually begins represents a small amount of noise in

the recording which is not really as loud as the area under that line might imply. Likewise, the
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representation of the end of the second note in the same recording is misleading—the note did not
stop abruptly (the same is true of the violin plots). The lowest plot in Figure 2.9 shows how the
begins and ends of all the plots “should” look.

Sometimes the amplitudes of the two notes vary significantly. This can be seen most clearly
in the bottom violin plot of Figure 2.13. Notice the “swell” on the second note in the top three
plots of the same figure.

Some plots include “burrs” along the power curve; Figure 2.14 is a case in point. These are
areas where the peak-tracking algorithm was confused, often by a large-scale shift in phase due to
time-varying spectral changes. It is possible to remove these “burrs” by correcting the locations
of the peaks and then re-calculating the power curves; but I have done so only in the worst cases.
Experience shows that the burrs accurately follow the outline of the curve; and no burrs occur
here in the transition regions anyway, which is the subject of interest.

For some instruments, the power for a given playing style seemed quite consistent across
interval size and direction. To give one example, the differences among the three plots in Figure 2.9
on the one hand, and the differences among the three plots in Figure 2.10 on the other, are not
nearly so large as the differences between the two figures. In Figure 2.9, the amplitude dip is deeper,
and the time gap between the two notes wider, than in Figure 2.10. The same generalizations can
be made about the trumpet power plots (Figures 2.11 and 2.12), although the differences between
the two ascending sevenths are not as pronounced. With the violin, the same sort of trend can be
found, but not always as pronounced as in the clarinet or trumpet. Examination of the plots in
Appendix 4 shows that this pattern holds for almost all of the instruments.

Furthermore, this pattern seems to hold no matter whether the intervals are ascending or
descending. Thus, the power traces for the ascending and descending seconds in Figure 2.13 are
quite similar, as are the two top traces in Figure 2.14; the largest difference occurs between the
two figures. To give more examples, ascending and descending pairs are included for the piccolo
and bass flute in Appendix 4 (see Table A4.1; cello plots will be given later in this chapter). Of
course, there are some exceptions to this pattern, but they seem to be caused by idiosyncracies of
playing a given interval on a given instrument, as in the second plot from the bottom of Figure
2.14.

I have thus concluded that time-varying power varies more with the playing method than with
size of the interval, the direction of the interval, or the instrument used. The cello was the only
major exception; a special section will be devoted to that instrument presently.

(Tezt continued on p. 52)
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Figure 2.9. Period-synchronous power of two notes on the clarinet, with the second note tongued.
The lower (first) note is A220 in each case. From the top: ascending third, ascending fifth, ascending
seventh.
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Figure 2.10. Period-synchronous power of two notes on the clarinet, with the second note untongued.
The lower (first) note is A220 in each case. From the top: ascending third, ascending fifth, ascending
seventh,
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Figure 2.11. Period-synchronous power of two notes on the trumpet, with the second note tongued.
The lower note is A220 in each case. From the top: ascending second, ascending third, ascending
fifth, ascending seventh.
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Figure 2.12. Period-synchronous power of two notes on the trumpet, with the second note untongued.
The lower note is A220 in each case. From the top: ascending second, ascending third, ascending
fifth, ascending seventh.
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Figure 2.13. Period-synchronous power of two notes on the violin, with change of bow direction for
the second note. The lower note is A220 in each case. From the top: ascending second. descending
second, ascending third, descending third.
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Figure 2.14. Period-synchronous power of two notes on the violin, with no change of bow direction for
the second note. The lower note is A220 in each case. From the top: ascending second, descending
second, ascending third, descending third.



52 Chapter 2

One might apply some statistical techniques, such as analysis of variance, to these power plots
to determine whether, say, the differences between several intervals were statistically significant
on a given instrument. To do so would require an even larger data base than what I had gathered
(this is not recommended for the casual researcher). Furthermore, any such recordings would have
to be equalized to remove as many inessential variables as possible; but the difficult of doing so

has already been discussed.

Time-varying Analysis of Spectrum in Transitions

Preliminary analysis of the amplitude plots (Figures 2.3-2.8) showed that the spectrum was chang-

ing in the transition. Measuring that spectrum and how it changes is not easy.

Problems with the Phase Vocoder

Reliability of Frequency Traces: A perennial difficulty with the phase vocoder is interpreting
its output. Since the amplitude of the signal drops several tens of decibels during many transitions,
the frequency traces are especially difficult to interpret, because the frequency trace becomes

unstable at very low amplitudes.

Iiéliabﬂity of Amplitude Estimates: Recall that the phase vocoder, in effect, places a band-
pass filter around each harmonic. Another problem with using the phase vocoder for analyzing
transitions is that the center frequencies of the filters remain fixed once set, so that the harmonics
of the new note no longer fall onto the analysis channels in a useful way. If two harmonics fall
into one channel, a characteristic beating in both the amplitude and frequency traces for that
channel is the result. (Dolson [1983] gives an especially clear account of this phenomenon). If
some channels capture no harmonics, then their outputs must be selectively ignored.
Furthermore, as the signal leaves one channel and enters the neighboring channel, the ampli-
tude of the signal is subject to distortion. The bandpass filters used to realize the phase vocoder
have a rolloff of their own (see Figure 2.15). As long as a spectral component remains in the region
shown at A-B in the figure, the magnitude output from the corresponding channel can be trusted.

But the spectral component at C has its magnitude modified by the filter’s own rolloff. Dolson
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A B C

Figure 2.15. For a given channel of the phase vocoder, the amplitude of a component falling in
the range A-B is unaffected by the analysis filter's frequency response. This is not the case for a
component at, say, C.

(1983, pp. 37-38) suggested* that the magnitude of a signal at C could be scaled by the inverse of
the filter’s frequency response to recover the true magnitude. My own analysis and tests showed
that this works well for steady-state signals, if the original magnitude is known.

The situation becomes more complicated with time-varying signals. Even when the frequency
is moving slowly with respect to the filter bandwidth, this method works well. However, for pitch
changes such as those found in the recordings used for the current work, the phase vocoder
apparently does not track accurately enough to permit this amplitude compensation.

Mark Dolson and I have discussed this problem extensively; I ran a number of tests of the
phase vocoder to convince myself that a problem might really exist. The simplest method to
demonstrate the extent of the problem is to reproduce a few figures from Dolson’s thesis, to which
he has graciously consented.

Figure 2.16a shows the frequency response of a low-pass filter used to design the passbands
of a phase vocoder analysis stage (taken from Figure 5b in Dolson’s thesis, p. 39). In the same
figure, c) shows the frequency of a sinusoidal test signal passing through the filter; the frequency
of this test signal is swept from the center of a phase vocoder passband to well past the edge of
the passband. The middle plot shows the amplitude measured at the output of the corresponding
phase vocoder channel. (Figures 2.16b and 2.16c are Dolson’s Figure 8, p. 42). The z-axis in a)
is frequency offset from the channel’s center frequency; 0 on this z-axis corresponds to 2000 Hg

on the y-axis of the plot in c). The solid lines constructed on this figure are my own accretion.

*This idea was developed independently at CCRMA in conversations with Julius O. Smith and James A. Moorer,
whose contributions are gratefully acknowledged.
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Figure 2.16. The response of a phase vocoder analysis channel to a test signal rapidly moving from the
center past the edge of the passband (after Dolson [1983], pp. 39 and 42; reprinted with permission).
a) Frequency response of the prototype analysis filter. b) Amplitude output by the channel swept by
a sine wave whose frequency changes as shown in c).
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Figure 2.17. The amplitude of a spectral component lying between two adjacent channels of the phase
vocoder may in some cases be calculated by combining the amplitudes from the two channels.

Point K in the lowest plot marks a displacement of 500 Hz from the center frequency of the
channel, corresponding to point C in the top figure. By constructing the lines KJ, HJ, and GH,
the magnitude of the ouptut in the middle plot can be read off as approximately 8000. Now
2010g(8000/10000) is approximately equal to —2 dB, which correctly corresponds to point A in
the top figure. However, as the test signal continues its sweep, the output of the channel becomes
less reliable. The magnitude value of 2000 at point L in the middle figure is reached when the
frequency is at about 2850 Hz on the y-axis of the lowest figure; this is determined by constructing
the lines LM, MN, and NP. The value of 2000 corresponds to about —14 dB; but in the uppermost
plot, —14 dB (shown at point D) falls at a frequency of about 1400 Hz (found by constructing DE
and EF), which translates to a frequency of 3400 Hz in the lowest figure—a frequency which the
test signal never even reaches.

In actuality, the signal at point C in Figure 2.15 falls within two overlapping filters; this
situation is shown in Figure 2.17. It turns out that the correct magnitude can be recovered even
in the degenerate case being considered here by combining the magnitude of the output of the
filter labelled A in Figure 2.17 with the magnitude of the B filter. This would work, of course, only
if no other spectral components had entered the passbands of either filter; but since harmonically
related spectral components would presumably be moving together, there would most likely be
a time when every filter would fall over two spectral components: one at each edge of the filter.
Based on observations of test signals, an even larger problem appeared. The method for combining
the outputs of A and B varies with the length of the analysis filter A in Equation 1.3, the number
of channels N, and the like. In one instance, the outputs of the two filters could be combined
linearly; for another parameter setting, the filters had to be combined according to ,/m;
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and so on. For practical work, it would be unreasonable to have to determine this method for
every new set of analysis parameters.

Further work with real musical tones suggested that none of this would cause problems; it
appeared that the frequency and amplitude traces produced by the phase vocoder were adequate
for resynthesizing the transitions. Experiment 1 in Chapter 3 will show that this is indeed the

case.

Creating Spectral Plots (Amplitude)

The problem remained of how to produce useable spectral plots. It was certainly possible to run
the phase vocoder twice: once for each note, with the filter center frequencies adjusted accordingly.
The end of the first note analyzed in this manner looked reasonable; and so did the beginning of
the next.

The only way I could find to make useful spectral plots was to splice together these two
analyses in a three-dimensional representation. It was necessary to expand my spectral editor
(Strawn 1985a) to handle these two analyses properly. Figures 2.18 (the tongued clarinet ascending
major third) and 2.19 (the same interval, played untongued) show a sample of the result. These
are the same ascending thirds already presented in Figures 2.3, 2.4, 2.9, and 2.10.

In these plots, time runs from left to right. The fundamental is at the top of the plot; higher-
order harmonics are plotted along their own axes, which are arranged below the fundamental on
the page. One should imagine this spectral plot as “coming out toward” the viewer from the
fundamental “at the back®. Each harmonic is plotted on a scale of 0 to —60 dB, with 0 dB being
the maximum of the strongest harmonic in the entire plot. At the point specified in the caption,
the plotting program switches from the phase vocoder analysis for the first note to that of the
second; this is approximately the point of pitch change.

Clearly, there is a spectral rolloff at the end of the first note in the tongued transition of
Figure 2.18; of the thirty harmonics shown here, perhaps the top 20 drop out. Note that the
pattern with which the harmonics drop out and re-enter is not entirely regular. However, in
general the higher-order harmonics leave sooner and re-enter later than their lower-frequency
counterparts. This corresponds to the “wedge-like funnel, open toward the higher frequencies,”
found by Résing (see Chapter 1). Comparison of Figure 2.18 with Figure 2.19 shows that this
change in the spectrum is not so pronounced for the untongued case, where fewer harmonics drop

out and the gap width is shorter (both plots show 300 msec). The fact that the upper harmonics
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experience such a strong drop in amplitude might explain why tracking vocoders have trouble
following them in a transition (Dolson 1983, p. 107).

To cite some more examples, Figures 2.20 and 2.21 show the tongued and untongued transi-
tions, respectively, for the ascending major third on the trumpet. These transitions were already
shown in Figures 2.5, 2.6, 2.11, and 2.12. As the attack of the second note begins, there is some
noise visible in the higher-order harmonics. This would have been lost in Résing’s plots, I suspect.
The irregularity in the pattern according to which the harmonics drop out and re-enter is striking.
Another set, this time for the violin, is given in Figures 2.22 and 2.23; here we have the ascending
third, already met in Figures 2.7, 2.8, 2.13, and 2.14.

There are sometimes spectral cues specific to one instrument. For example, the “blips”
associated with the attack of the brass can be (barely) seen in the attack of the trumpet notes.
However, the following generalization applies to all of the instruments analyzed: the specirum
of the transition before the point of pitch change can be conveniently characterized as a low-pass
filtered version of the spectrum at the end of the steady-state of the first note.

More plots of this kind have been relegated to Appendix 5 (except for the cello and flute, to
which we will turn shortly). The short introductions to Appendices 4 and 5 give an overview of
why certain intervals were selected for inclusion there.

The following conclusion is based on an analysis of three-dimensional time-varying spectral
plots for all (!) of the recorded transitions: Fewer harmonics drop out in the untongued transition,
and the gap in the spectrum is shorter in duration, than in the tongued transition. I found this to
be a general principle, no matter the size of the interval performed, the direction of the interval,
or the insirument playing. This matches closely what was observed previously for time-varying

power.

Plots of the Frequencies

For a single note, it is possible to create three-dimensional plots of the time-varying frequency
traces similar to those for the amplitude traces. Three-dimensional plots of the frequencies in a
transition did not prove to be useful. If one plots a large number of channels, then the frequency
resolution is too coarse; this problem is compounded when the interval between the notes is wide.
Plotting a few channels at a time fails to give information about the overall spectrum, which was
so important with the amplitude plots. For the sake of completeness, a few plots of this kind are
given in Figures A5.18-A5.20 in the appendix.

(Texzt continued on p. 64)
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Figure 2.18. Time-varying spectral analysis (30 harmonics) of a tongued ascending major third played
on the clarinet. The lower note is A220; the splice point is at £=1.05 sec.
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Figure 2.19. Time-varying spectral analysis (30 harmonics) of an untongued ascending major third

played on the clarinet. The lower note is A220; the splice point is at t=1.02 sec.
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Figure 2.20. Time-varying spectral analysis (50 harmonics) of a tongued ascending major third played
on the trumpet. The lower note is A220: the splice point is at £=0.95 sec.
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Figure 2.21. Time-varying spectral analysis (50 harmonics) of an untongued ascending major third
played on the trumpet. The lower note is A220; the splice point is at £=0.925 sec.
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Figure 2.22. Time-varying spectral analysis (35 harmonics) of an ascending major third played with
bow change on the violin. The lower note is A220; the splice point is at t=1.11 sec.
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Figure 2.23. Time-varying spectral analysis (35 harmonics) of an ascending major third played with
no bow change on the violin. The lower note is A220; the splice point is at t=1.00 sec.
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Masking Effects in the Transition

The three-dimensional amplitude plots might imply with their visual impact a difference between
the playing styles that does not correspond to their audio differences. It must be remembered
that in the three-dimensional plots already given, the magnitudes output by the phase vocoder do
not drop to 0.0 when the harmonic drops out of the picture; rather, those harmonics continue to
be present but at a very small amplitude. Perhaps those low-level harmonics really “fill in” the
tongued transition. Or, seen from another perspective, it might be possible that the amplitudes
of the low-frequency harmonics are so loud that in the nontongued cases they mask the high-
frequency components, making the distinction shown in the plots misleading.

To test this, I modified the phase vocoder analysis outputs of the trumpet ascending M3 (for
which plots have already been given in Figures 2.20 and 2.21) so that the amplitude traces were
forced to 0.0 at some threshold below the maximum of each note: —30 dB, —40, —50, and —60.

From these “squelched” analyses, I created new three-dimensional plots, still using the 60 dB
range of the earlier plots. The results are shown in Figures 2.24 and 2.25 (tongued and untongued,
respectively, squelched to —30 dB); Figures 2.26 and 2.27 (—40 dB); and Figures 2.28 and 2.29
(=50 dB). Retaining the —60 dB dynamic range gives these plots an unusual appearance: the
harmonics appear to be “standing on stilts.” Still, this facilitates comparison among the three
“squelching” threshold and the originals.

These “squelched” analysis data were used to synthesize test stimuli. It turns out that even for
the tones squelched to —30 dB, the difference between tonguing and nontonguing is still audible in
the resynthesis, and visible in the plots. Admittedly the auditory difference is not so striking as the
visual difference. Still, masking does not seem to play a role in the listener’s ability to distinguish
these transitions. Incidentally, these resyntheses are unsuitable for further experimentation, as
they are characterized by “breebles” that occur when one attempts arbitrary filtering of time-
varying spectral analysis data. In other words, the isolated “mountain peaks” in the plots cause

problems. Besides, the ear’s overall impression is that the signal sounds low-pass filtered.
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Variation from one Performance to the Next

What I tell you three times is true. (Lewis Carroll, The Hunting of the Snark, 1876)

The possibility remained that, due to the quirks of fate, time-varying power and spectral char-
acteristics of the recorded tongued and untongued transitions fell only coincidentally into the
patterns which seemed to occur. To examine this, as many as five separate recordings were made
(by the same performer) for a given instrument, interval size, interval direction, and playing style.
One example of such a set of duplicate recordings, from the flute, will be presented here.

Figures 2.30 and 2.31 show three recordings each for the tongued and untongued (respectively)
ascending major thirds played on the flute; we see here the time-varying power, analyzed in the
manner discussed earlier in this chapter. The differences between the tongued and untongued
cases are much greater than the differences among the repeated recordings for each case. The same
conclusion is supported by the time-varying spectral plots for these same transitions. Figures 2.32,
2.34, and 2.36 show the tongued transitions of Figure 2.30; the untongued transitions are given in
Figures 2.38, 2.35, and 2.37. Such multiple sets of amplitude and spectral plots were collected for
many of the transitions recorded here. (More are given in Appendix 4). Thorough examination
of this data quickly led to the conclusion that the performers could reliably reproduce a given
transition, and that the transitions illustrated in the figures in this chapter and in the appendices
were representative performances.

Incidentally, there were 212 recordings made and analyzed, including these repeated cases.

On the Effects of Instrument Size

Analysing power plots for the cello, given in Figures 2.38 (with bow change) and 2.39 (no bow
change), proved to be a problem. Recall that on the violin only the seconds and thirds were
recorded because it is awkward to finger a larger interval on one string; the same problem of course
occurs in the cello. These plots should be compared with the violin recordings in Figures 2.13 and
2.14, respectively.

(Tezt continued on p. 84)
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Figure 2.25. Time-varying spectral analysis of an untongued ascending major third played on the
trumpet, as in Figure 2.21, but with the amplitude traces squelched to 0 when they fall below —30 dB.

The splice point is at £=0.925 sec.
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Figure 2.26. As in Figure 2.24, but with the amplitude traces squelched below —40 dB.
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Figure 2.28. As in Figure 2.24, but with the amplitude traces squelched below —50 dB.
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Figure 2.29. As in Figure 2.25, but with the amplitude traces squelched below —50 dB.
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Figure 2.30. Three different recordings of ascending third tongued transitions on the flute. The lower
(first) note is A220.
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Figure 2.31. Three different recordings of ascending third untongued transitions on the flute. The
lower (first) note is A220.
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Figure 2.32. Time-varying spectral analysis (25 harmonics) of a tongued ascending major third played
on the flute (cf. the top plot in Figure 2.30). The lower note is A220; the splice point is at t=1.065 sec.
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Figure 2.33. Time-varying spectral analysis (25 harmonics) of an untongued ascending major third

played on the flute (cf. the top plot in Figure 2.31). The lower note is A220; the splice point is at
t=1.075 sec.
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Figure 2.34. Another time-varying spectral analysis (25 harmonics) of a tongued ascending major

third played on the flute (cf. the second plot in Figure 2.30). The lower note is A220; the splice point
is at t=1.14 sec.
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Figure 2.35. Another time-varying spectral analysis (25 harmonics) of an untongued ascending major

third played on the flute (cf. the second plot in Figure 2.31). The lower note is A220; the splice point
is at £=1.10 sec.



78 Chapter 2

-58 \ W
N
L,-—wwwnww’\

AN
AMM,nF].W\Mm '
VI, e 0 WA A Y
o\, P
Y]

S
1uﬂvlf\- MMI) g\“r\ 'J] MY ALV\ { a4 A

“ s MM B n
V}{k NATANIE W

! AN R
A 1IN

g
:ZB
="

il
LA MM A M,u\,ﬁ

>

L ] II LI LI LILI LI lj

1.18 1.28

Figure 2.36. Yet another time-varying spectral analysis (25 harmonics) of a tongued ascending major

third played on the flute (cf. the third plot in Figure 2.30). The lower note is A220; the splice point
is at ¢+=1.08 sec.
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Figure 2.37. Yet another time-varying spectral analysis (25 harmonics) of an untongued ascending
major third played on the flute (cf. the third plot in Figure 2.31). The lower note is A220; the splice
point is at £=1.045 sec.
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Figure 2.38. Period-synchronous power of two notes on the cello, with change of bow direction for
the second note. The lower note is A220 in each case. From the top: ascending second, descending
second, ascending third, decending third.
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Figure 2.39. Period-synchronous power of two notes on the cello, with no change of bow direction for
the second note. The lower note is A220 in each case. From the top: ascending second, descending
second, ascending third, decending third.
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Figure 2.40. Time-varying spectral analysis (50 harmonics) of an ascendmg major third played with
bow change on the cello. The lower note is A220; the splice point is at £t=1.20 sec.
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Figure 2.41. Time-varying spectral analysis of an ascending major third played with no bow change
on the cello. The lower note is A220; the splice point is at t=1.14 sec.
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Now the power plots for the seconds on the cello follow the pattern established previously.
The amplitude dip for the bow change is deeper, and the time gap is wider, than without bow
change. The distinction seems to disappear with the thirds, however. Perhaps the mass of the
thicker cello strings is large enough, or the resonances in the cello body last long enough, that the
expected gap is “blurred” in the bow-change recordings. Another interpretation might be that
this is one of those cases where the cellist was able to create an extremely smooth bowed legato.

Examination of the spectral plots helps clarify the situation. Figures 2.40 and 2.41 show the
time-varying spectrum of the ascending thirds with and without bow change, respectively. (These
plots should be compared with Figures 2.22 and 2.23 for the violin). Compared with Figure 2.41,
Figure 2.40 shows the dip in the spectrum found earlier for transitions with bow change. The
effect is not as pronounced in the cello as in the violin; but it is still there. Thus, the power plots
alone should not be taken as a measure of the parameters of a transition.

Still, the possibility remained that the size of the instrument might play a major role in
shaping transitions. The situation was complicated for the brass instruments. The trombone, for
which a few recordings had been made, was deemed to be unsuitable for comparison because of
the difference between the slide and the valve mechanism. The closest analog to a cello in the
brass family would be a valve trombone—but a valve trombone player could not be found. As for
the woodwinds, recordings were made of the bassoon (for comparison with the oboe—both are
double-reed instruments) and of three flutes: piccolo, bass flute, and regular flute. Examples of
power and spectral plots for these instruments are given in this chapter and in the appendices.
Examination of these plots (and those for the other intervals, not reproduced here) leads to the
conclusion that in the woodwind family, the size of the instrument does not affect the evolution in
power and overall spectrum at the transition; in the strings, the power plots can be obscured in
some cases with larger instruments, but the overall spectral pattern follows that of the woodwinds;

and the brass are assumed to function in the same way as the woodwinds.

What, then, is a transition? (II)

For the purposes of this study, a transition is a region of change between two notes performed on
an orchestral instrument. This is another way of stating the definition given in Chapter 1 (see also
Chapter 7). Compared with a transition, the surrounding notes themselves are relatively stable.
Reducing the long list of possible parameters given at the beginning of this chapter, a transition

can be coarsely characterized as shown in Figure 2.42 by the following “parameters”:
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Figure 2.42. The parameters of a transition.

1. There is some change in amplitude: the first note dies out, after which the second
note starts up.

2. As the first note dies out, its spectrum “falls off” (that is, the higher-order spectral
components disappear); as the second note enters, its spectrum is enrichened. There
may be spectral cues in the attack of the second note which depend on a given playing
style.

3. There is a change in pitch which falls closer to the attack of the second note than to
the decay of the first.

4. There is some amount of time between the two notes; the decay of the first note

does not coincide with the attack of the second.

To summarize the results of this chapter, there is furthermore a regular, significant difference
in time, power, and spectral rolloff between the tongued and nontongued cases across all the
instruments. In the tongued case, the notes are generally farther apart, the amplitude dip in the
transition is lower, and the spectral changes are more extensive, than in the nontongued case.
On the other hand, there is no systematic difference between ascénding and descending intervals
for a given instrument, nor for intervals of varying sizes. The player can easily replicate a given
articulation. Only in the string instruments does the size of the instrument show any difference

in power analyses.
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Table 2.2. Summary of representative transitions.

Maximum peak Minimum peak
amplitude amplitude in
Transition of steady-state transition
First Second
note note
Clarinet Tongued —-0.76 0 -36.8
Untongued 0 -0.14 -13.0
Trumpet  Tongued 0 -0.98 -38.7
Untongued 0 -2.61 -20.7
Violin Bow Change -0.98 0 -30.4
No Bow Change -2.82 0 —18.7

Note: all values in dB, relative to linear amplitude of 0.75 (all two-note
pairs were scaled to have their maxima at that value).

Choosing Representative Cases

The set of 212 recordings was much too large to permit design of rigorous experiments. It was
‘thus necessary to isolate a set of representative transitions, not too many and not too few, which
could be manipulated and studied further.

Clearly more than one instrument should be represented—at least one of the strings, brass,
and woodwind. For the strings, the violin presented fewer problems, as its power plots were clearer.
The trumpet was the only brass instrument seriously considered here. For the woodwinds, the
clarinet was selected.

If size and direction of the interval performed do not play a major role, then only one interval
in one direction need be chosen. That interval should be represented in the recordings for all of the
instruments chosen. This ruled out the ascending major second, for which the clarinet recordings
had been lost. The ascending major third was then chosen.

Obviously both tongued and untongued cases must be included, given that significant differ-
ences between them were found.

Some of the parameters of the resulting six transitions (two playing styles times three in-
struments) are summarized in Table 2.2. (Information about timing will be given in Table 5.4).
These are the six transitions which have been analyzed for amplitude (Figures 2.3-2.6), power
(Figures 2.9-2.14), and spectral changes (Figures 2.18-2.23). These six transitions form the data

base for most of the experiments discussed in the rest of this document.



CHAPTER 3

MODELING TIME-VARYING SPECTRAL CUES

An important step which must be taken in methodological development 1s the
analysis and synthesis of connected notes. This necessarily will precede care-
Jully controlled work on the perception of timbre sn musical contezts. Recall
that the analysis techniques employed to date for timbre have been inkerently
designed for and applied to isolated notes. There ezists no analytic scheme
which is directly applicable to musical phrases. (Grey 1975, p. 109)

Experiment 1: Phase Vocoder Analysis/Resynthesis

Background

Chapter 2 discussed possible shortcomings of the phase vocoder in analyzing transitions between
notes. In particular, the frequencies in a transition change too quickly for the phase vocoder to be
able to track the spectral components accurately. This experiment is designed to show that these
shortcomings are of such small magnitude as to be imperceptible, and that the phase vocoder is
in fact an adequate technique for performing time-varying spectral analysis of such transitions.
If the phase vocoder were inadequate, one would expect the same problems to occur regardless
of the instrument being analyzed. Therefore it is sufficient to experiment with just one instrument;
the trumpet was arbitrarily chosen here. Also, any jnadequacies of the phase vocoder should be
more apparent with a larger interval between the notes played; therefore, the largest interval avail-
able (m7) was chosen. Finally, there should be no differences between ascending and descending
intervals in observed behavior of the phase vocoder nor in the audibility of any distortion produced
by the phase vocoder. In short, the ascending major seventh played on the trumpet formed the

basis for this experiment.
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At least two possible sources of distortion in the analysis can be identified:

1. As mentioned before, the phase vocoder might not be able to track signals ade-
quately in the transition region. One would expect this to be most prominent in the
untongued case, since the frequencies are shifting so rapidly (sometimes across just
a few periods).

2. The phase vocoder models the signal as a group of harmonically related sinusoids.
It might not be able to emulate the “puff” of noise at the beginning of a tongued
attack.

Preliminary work demonstrated that neither of these produced audible distortion in the transition.

Thus, this experiment will use only the untongued case.

Creating the Stimuli

The recording of the trumpet untongued ascending m7 was resampled to 26040 Hgz, to provide a
sampling rate into which the fundamentals of both notes would divide easily. Both notes in the
stimulus were analyzed using two sets of phase vocoder parameters. The settings appropriate for
the lower note were N = 100 and R = 5, with N = 56 and R = 8 for the upper note. As noted
before, R was kept smaller than N/2.*

The note pair was resynthesized twice, using both analyses. Both resynthesized note pairs
sounded completely natural, although slightly low-passed when compared with the original. (This
problem will be discussed in more detail for Experiment 2).

To make a test stimulus, it proved impossible to splice the analysis data from the first note
directly onto the analysis data from the second note, a procedure implied by the figures of Chap-
ter 2 and Appendix 5. After resynthesis using this method, the second note still sounded quite
natural, but underwent some severe phase distortion which made it unsuitable for use in an A/B
experiment. The phase distortion apparently occurred because of the abrupt change in analysis
parameters.

Thus, the final test stimulus was created with a 20-msec cross-fade from the end of the first
note as analyzed with NV = 100 to the beginning of the second note as analyzed with N = 56.

*Q, mentioned in (Gordon and Strawn 1985) is set to 1, effectively turning off any further interpolation of the
data points as suggested in (Moorer 1978). Some modification to the code given in (Gordon and Strawn 1985) is

necessary to make this work right.
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Figure 3.1. Stimuli for Experiment 1. a) Untongued trumpet transition. b) Each note has been
analyzed and resynthesized separately. At the point marked by the arrow. a 20-msec cross-fade joins
the resynthesized notes. (The x-axis shows time in samples, at a sample rate of 25 600.)

The cross-fade occurred at the point shown in Figure 3.1. The resulting transition is sl;own in
Figure 3.1b. (This procedure also worked for the tongued case.)

The control stimulus was the original recording, shown in Figure 3.1a.
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Experimental Procedure

Experience has shown that a note resynthesized on the basis of phase vocoder analysis is phys-
ically slightly different from the original (this will be discussed more under Experiment 2). It
is not necessary here to show that the original and resynthesized tones are physically identical.
However, it 1s necessary to show that the listener cannot reliably distinguish between the two.
As stated above, the test stimulus sounded slightly low-passed when compared with the control
stimulus. (Attempted solutions to this problem will also be discussed under Experiment 2). Thus,
it proved impractical to conduct an experiment in which the subject decides whether two stimuli
are identical, because the notes surrounding the transitions proper are themselves different in the
two stimuli. Therefore, each subject was asked to state a preference for one of the two stimuli. If
the subject has no clear preference for one of two quite similar stimuli, then we can conclude that
the two are perceptually interchangeable. Indeed, they might even be identical for all practical
purposes.

In such preference tests, it is important to account for any order effects. That is, if A and B
are different stimuli in a given case, then the preference for A followed by B must be compared
to the preference for B followed by A. Also, comparing each stimulus with itself (A:A and B:B)
checks for subject bias toward the first or the second stimulus of each pair; such tests are sometimes
called Vezierversuchen. The subjects in this experiment thus heard four cases, numbered 1-4 in
the list below. Each case consisted of one stimulus, followed by a short pause, followed by another

stimulus:

Comparison cases

1. Original (control stimulus) vs. resynthesized (test stimulus)
2. Resynthesized vs. original

Identical cases

3. Original vs. original

4. Resynthesized vs. resynthesized

The comparison cases (1 and 2) were presented 3 times each; the identical cases (3 and 4) were

presented twice each. (Details on the presentation of the stimuli are given in Appendix 3).
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Table 3.1. Average Preference for First or Second
Two-note Pair in Experiment 1.

Subject Number

Case 1 2 3 4 5 6 7 8 9 10
Comparison cases

1 167 200 133 167 200 167 167 167 100 1.67
2 200 167 100 200 200 100 167 133 133 1.00
Identical cases

200 150 100 200 150 200 150 100 1.00
4 200 150 150 100 200 200 100 150 100 150

Note: Values may range from 1.0 to 2.0. A value of 1.0 in cases 1 and 2 means that the
original is preferred over the synthetic; in cases 3 and 4, that the first of two identical
stimuli is preferred.

Results

Table 3.1 shows the responses for all 10 subjects (information on the subjects is given in Ap-
pendix 3). Each entry in the table shows the average preference (across three presentations per
subject for the comparison cases, across two presentations for the identical cases). The only in-
termediate values possible were thus 1.33 and 1.67... for the comparison cases, and 1.50 for the
identical. Some order effects were apparent with the identical cases on a subject-by-subject basis.
For example, subject 1 always selected the second of two identical stimuli, whereas subject 9 always
chose the first. However, it was impossible to find any meaningful overall pattern in the identical
cases.

For the comparison cases, examination of the data showed that subjects 3 and 9 preferred the
original over the resynthesis; subjects 1, 2, 4, 5, and 7 preferred the resynthesis over the original (!);
and subjects 6, 8, and 10 seemed to prefer neither. Although it might appear surprising that any
subject would prefer the synthetic stimulus (if this preference were not due to random variation in
the responses), this might occur because these particular test subjects were used to working with
synthesized sound. At any rate, no consistent pattern appeared in the data for the comparison
cases either.

This preliminary conclusion was borne out in Table 3.2, which shows the means of all of the
responses for each case averaged across all subjects. It is reasonable to conclude that the subjects
could not accurately distinguish between the two stimuli when the mean is close to (case 3) or at

(cases 2, 4) the value of 1.5.
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Table 3.2. Preferences for First or Second
Stimulus in Experiment 1,
Averaged across all Subjects.

Case Mean t
Comparison cases

i 163 1.49
2 1.50 0.00
Identical cases

3 1.55 0.44
4 1.50 0.00

Note: A value of 1.0 in cases 1 and 2 means that
the original is preferred over the synthetic; in cases
3 and 4. that the first of two identical stimuli is
preferred.

The value of case 1 might seem far from the expected mean. It is more meaningful to
examine the combined mean of the comparison cases (1 and 2) across all subjects, which is 1.57.
This value suggests that the subjects could not accurately distinguish between the original and
the resynthesized stimulus; if anything, subjects showed a slight preference for the resynthesized
stimulus.

Whether any of the means of Table 3.2 indicates an actual preference for the original or simply
chance variation around the “no preference” mean of 1.5 is a question answered by the well-known
t test. The results are also shown in Table 3.2. The t values indicate that none of these means was
statistically different from what one might expect from a population of subjects with no preference
for one signal over the other.

The question then arose as to whether the means for the four cases were significantly different
from each other. If not, then it can be asserted that the seemingly large mean for case 1 is no more
significant than the other, smaller means. Table 3.3 gives the analysis of variance for the data in
Table 3.1, following the tabular organization given by Hays (1963, p. 372). The original data (not
given here) were used to calculate the values of the sums of squares given in the $S column. The
df column shows the “degrees of freedom” which, in the first line, is one less than the number of
cases, and in the second line is the number of responses across all subjects and cases (100) minus
the number of cases. The MS columns shows the values of the mean squares, each formed by
dividing the SS value by df in the same line. The MS values in Table 3.3 are quite small; this is
due to the fact that some subjects consistently favored the first or the second pair within a case,
as was mentioned above. The F value is found by dividing the upper M'S value by the lower. Any

F value close to 1 suggests that there is no significant difference among the means of Table 3.2.
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Table 3.3. Analysis of varlance
for Experiment 1.

Source SS df MS F
Cases 0.33 3 011 0.44
Error 2442 96 0.25

Totals 2475 99

Indeed, standard statistical tables shows that F' = 0.44 with 3 vs. 96 degrees of freedom implies
p > 20%; that is, the probability that the given data would occur due only to chance is greater
than 20%. In other words, there is no statistically significant difference among the means of Table
3.2, QED. Thus, none of the means varies significantly from the value of 1.5, and I conclude that
the subjects showed no preference for either the original or synthetic stimulus, also QED.

Indeed, such a small F value suggests that the variation in the data is less than one might
expect from pure chance. However, the value 1/F(= 2.29) is still less than the 5% F value for 3
vs. 96 degrees of freedom (= 8.55), so no significance is attached to the smallness of F. Indeed,
this small F' value can be attributed to the tendency of certain subjects to pick the first or second
transition within a case.

All of this statistical sophistication may appear to be overkill when one reads the written

comments of the subjects (see Appendix 3), of which these are typical:

Subject 3: “They all sounded rather similar.”
Subject 5: “I was not able to hear any differences in any of these pairs (nor between one

pair and another).”

Conclusion

The subjects showed no clear preference for either the original nor the resynthesized transition.
The transition resynthesized on the basis of full phase-vocoder data is therefore perceptually

interchangeable with the transition in the original.
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Experiment 2: Line-segment Approximation

It remains possible that many of the properties necessary for the simulation of
connected passages will be amenable to simplification. This will greatly reduce
the process of stimulus specification in the physical domain, and lend greater
control to the synthesis method. (Grey 1975, p. 110)

Background

Phase vocoder analysis provides too much data for practical work in sound synthesis, and for
controlled timbral studies. It is commonly accepted that line-segment approximation of the am-
plitude and frequency traces can produce individual resynthesized tones which sound quite close to
the original (Risset 1966; Risset and Mathews 1969; Grey 1975; Moorer 1977; Moorer, Grey, and
Strawn 1977, 1978; Charbonneau 1981). Experiment 1 showed that the phase vocoder adequately
represents the time-varying spectrum in the transition. The question remains as to whether line-
segment approximations are likewise adequate for synthesizing musical transitions.

Methods for creating reasonable line-segment approximations remained primitive (Risset
1966; Beauchamp 1969; Grey 1975) when this work started. (As Risset wrote (p. 29), “simpler
methods have to be found for use in computer music.”) A search of the literature on approxima-
tion theory and pattern recognition showed that several algorithms can be useful (Strawn 1980).
That work also resulted in a data structure and paradigm for syntactic, hierarchical analysis. This
data structure has the advantage that it allows for control across the entire spectrum, so that one

can add or delete features in all of the harmonics with one operation.

Creating the Stimuli

For the current work, the Split-Merge Algorithm combined with the Adjust procedure, both due
to Pavlidis (details and references given in Strawn 1980), were used. The algorithm was applied
to amplitude data in the following way:

1. From the phase vocoder analysis, create a “spectral average” by averaging the phase
vocoder data over a specified amount of time. A sample of such a spectral average
is given in Table 3.4 (another example is given in [Strawn 1985a]). For amplitudes,
this is equivalent to taking the Fourier transform over the time in question, which is

selected from the “steady-state” of each note.
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Table 3.4. Spectral Average of Steady-State of Violin Tone
Channel  Amplitude (dB) Freq. (Hz) freq,/(freq, x n)

1 05392 -25.69 221.0782 1.00000
2 10.3786 0.00 442.0194 0.99969
3 17760 —15.33 663.0221 0.99968
4 15451 -16.54 884.0308 0.99968
5 11551 -—19.07  1104.9779 0.99963
6 0.3557 -29.30 1326.0262 0.99967
7 05108 —26.16  1547.1213 0.99972
8 0.1608 —36.20 1767.9410 0.99961
9 04111  -28.04  1989.4891 0.99989
10 11457 —-19.14  2210.2055 0.99974
11 0.4452 -27.35  2431.2068 0.99973
12 0.2809 -—31.35  2652.6103 0.99988
13 0.1195  -38.78  2872.7697 0.99957
14 0.1521  —-36.68  3093.1538 0.99937
15 0.1664 —35.90  3314.8350 0.99960
16 0.1051 —-39.89  3535.6710 0.99955
17 0.1492 -36.85  3756.7322 0.99958
18 0.2259 -33.24  3977.9933 0.99964
19 0.1522 -36.68  4199.1868 0.99969
20 0.0565 —45.28  4420.1436 0.99968
21 0.1154 —39.08  4639.9356 0.99942
22 0.1104 —-39.47  4861.1602 0.99947
23 0.0277 -51.49 5080.3468 0.99912
24 0.0333 —49.87 5307.1811 1.00025
25 0.0437 —47.52  5527.4550 1.00009
26 0.0333 -—-49.86 5749.9391 1.00033
27 0.0143 -57.21  5966.8107 0.99961
28 0.0106 —-59.85  6191.0150 1.00013
29 0.0113 -59.25  6408.6716 0.99960
30 0.0138 5750 6629.8061 0.99962
31 0.0082 —62.04 6852.8772 0.99992
32 0.0092 -61.01 7060.0781 0.99796
33 0.0077 —-62.55 7286.8273 0.99880
34 0.0073 —63.06 7501.3884 0.99797
35 00096 —60.65 7738.4663 1.00009
36 0.0068 —63.71  7941.5504 0.99783

Note: This average spectrum was calculated over 0.1 sec. The fre-
quency of channel n is freq,: freq, is the frequency of channel 1 (the
fundamental).
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2. Multiply the averaged amplitude from each harmonic by some small constant, say
0.001. This constant varies with instrument, sample rate, N, and R.

3. Use the resulting number as a threshold for the Pavlidis algorithm, with the integral
error norm given in (Strawn 1980).

4. The resulting line-segment approximation, typically a dogen segments per harmonic
per note, must usually be cleaned up slightly by hand. An editor for this pur-
pose has been written, which displays both the original and the approximation
(Strawn 1985a).

Note that this process must be done twice to create a single test stimulus for this experiment—once
for each of the two notes surrounding the transition.

These two sets of amplitude traces must then be joined by hand on a harmonic-by-harmonic
and point-by-point basis. I have written an editor which displays the phase vocoder analyses for
both notes along with a composite function created by splicing the line-segment approximations
from the two notes at the point of pitch change; this is an extension of the editor described in
(Strawn 1985a). For each harmonic, the user creates a final transition function by hand. Figure 3.2
shows the tenth harmonic taken from the two phase vocoder analyses of the tongued ascending
third on the trumpet. In Figure 3.2a, the parameters of the phase vocoder were set for the
frequency of the first note. The phase vocoder analysis is shown along with the raw output of
the Pavlidis Split-Merge algorithm. Figure 3.2b shows a similar analysis, but with the phase
vocoder set up for the second note (Cf). This part of the figure must be carefully interpreted;
the “beating” at the left of the figure results when two harmonics of the first note fall into one
analysis band of the phase vocoder. Incidentally, the editor allows the user to view either or both
phase vocoder analyses along with either or both of the original approximations as well as the
approximation which the user creates by hand (Figure 3.2c; this is the actual function used in
synthesizing the tenth harmonic for the tongued trumpet stimulus). Editing in this manner is not
as easy as it might sound. Once the software works, several minutes of console time are needed
for each harmonic. For a stimulus with 30 or so harmonics, an hour can be quickly consumed.

The result of this editing is a set of line-segment approximations which more or less accurately
capture the amplitude characteristics of the harmonics in the transition. Figure 3.3 shows the
approximations which were created for the clarinet transition originally shown in Figure 2.18.

Risset (1966, p. 36, p. A-9) was not able to show that including either the “blips” in the
trumpet attack nor the slight burst of noise at the beginning of the note had any effect in his

resyntheses. My experience is that both of these features make an important difference in how
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Figure 3.2. Editing the amplitude traces in a transition for the tenth harmonic of the ascending third
tongued trumpet transition. a) Phase vocoder analysis parameters set for the first note. with line-
segment approximation created with the Pavlidis Split-Merge algorithm. b) As in a) but with phase
vocoder parameters set for the second note. c) The line-segment approximation created by hand from
the approximations in a) and b).

the test stimulus sounds. Much of the time spent in refining the trumpet test stimuli for this
experiment was in fine-tuning the blips in the attacks of the first dozen partials or so, and in
adding small amounts of amplitude to the higher harmonics right at the attack, to simulate the

tonguing noise.
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Figure 3.3. Line-segment approximations for the clarinet tongued ascending third transition in Exper-

iment 2. Cf.

Figure 2.18.
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Figure 3.4. The fundamental frequency trace for the two-note untongued trumpet test stimulus from
Experiment 2. The y-axis is frequency in Hertz; time (sec) is the x-axis.

For frequency traces, I found that it was adequate to create one line-segment approximation
from the fundamental of each note, using the editor just mentioned. The spectral average of Table
3.4 also contains values (in the right-hand column) for what I term the “relative harmonicity”
of the spectral component—how far it deviates from being an exact multiple of the fundamental.
For each harmonic, each point of the hand-made fundamental frequency trace is multiplied by
the harmonic number times this relative harmonicity value. This is slightly different from the
work by Grey (1975), who used a constant-frequency approximation for some experiments, and
from Charbonneau’s tones (1981), where the fundamental frequency trace was multiplied by the
(integer) harmonic number. In some cases, a slightly richer tone results by using the inharmonic
case. In particular, the straight-line frequency approximation of Grey is noticeably enriched.

Again, this process must be followed for both notes in the test stimulus. The frequency traces
for the two notes are simply spliced, using a vertical transition, at the appropriate point (Mathews
and Miller [1982] suggested this step-function frequency tramsition independently.) Figure 3.4
shows the frequency function used for the fundamental of the untongued trumpet test stimulus for
this experiment. Some activity in the attack of the first note is retained; its aural effect is not as
pronounced as the illustration would suggest. I found that as long as the amplitude of the signal is
low enough at the point of pitch change, the abrupt transition between the notes is never audible
as such. One listener, not a test subject here (but an experienced woodwind player) claimed that
he could detect the sudden frequency jump—but only after he knew the details of the synthesis
process. Likewise, in discussing commercial synthesizers, Kaplan (1981) found that an abrupt
frequency jump was audible. However, his remarks do not apply to the tones which I generated.

For my tones, the amplitudes of each harmonic varied independently; in Kaplan’s work, only the
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Table 3.5. Bandwidth of stimuli used in Experiment 2.

Cutoff Number of Harmonics
Instrument Frequency Tongued Untongued
(Hz) A Cil A C
Violin 7000 32 25 40 32
Clarinet 7500 34 27 35 28
Trumpet 10500 40 38 40 38

Note: each stimulus consists of two pitches, A followed by Cj.

overall amplitude envelope was controlled. Kaplan also pointed out that the attack of the second
note could be altered by the jump in frequency. In my work, the jump in frequency occurred right
at the beginning of the attack, leaving the rest of the attack of the second note unharmed. At any
rate, none of the test subjects in this experiment complained about the quality of the transition
synthesized in this manner.

As with most of the experiments in this work, the tongued and untongued ascending thirds
from the clarinet, trumpet, and violin were used. For each test stimulus, a two-note pair was
created using additive synthesis of the amplitude and frequency functions just described. The
control stimuli were the corresponding six original recordings.

The line-segment approximations included harmonics whose amplitudes were above approx-
imately —60 dB from the note’s maximum, as shown in Table 3.5. It was impractical to include
harmonics with amplitudes much lower than this, the amplitude and frequency traces being badly
degraded by noise. Also, the overall signal-to-noise ratio of the originals was about 60 dB.

The transitions in the synthesized stimuli sounded very close to those in the original record-
ings. However, as in Experiment 1, the notes in the test stimuli were and sounded slightly band-

limited. I spent considerable effort trying to solve this pesky problem:

1. I tried splicing from the original phase vocoder data to the line-segment approxima-
tion at the very end of the first note, then splicing back to the original phase vocoder
data (for the second note) at the very beginning of the second note. Resynthesis
using CCRMA’s Samson Box proved impractical because of the resulting high com-
mand rate. Also, even when the notes were resynthesized in software (prohibitively
expensive for the amount of computation needed for this experiment), the problem
mentioned in the discussion of Experiment 1 occurred here as well—there was a

nasty phase shift where the splice occurs.
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2. Using a very short cross-fade, I spliced the resynthized tramsition into the original
recording, splicing at the end of the first note and again at the beginning of the
second. For short cross-fade times (20 msec or s0), a perceptible phase shift occurred
at each splice. Due to the short duration of the transition, longer splice times proved
impractical.

3. Following a suggestion by Portnoff (1983), I examined the difference signal between
the original and the synthetic tones. This proved fruitless—the difference signal
turned out to be a waveform almost identical to the original, except for a “phasing”
throughout the duration of the note. Gish (1978) included an explicit noise term
n(t) in his synthesis model (his equation 1), and claimed: “When the residual error,
or noise, n(t), is listened to, it usually sounds just like tape hiss.” Ideally, one would
like to be able to characterize this noise signal. More work on the time-domain
difference signal needs to be conducted.

4. I tried calculating the difference signal by subtracting, on a harmonic-by-harmonic
basis, the amplitude and frequency traces of the line-segment approximation from
those of the original analysis data.* These difference signals were used to synthesize
a time-domain signal which was then added to the synthesized signal in order to
make it sound closer to the original. (Beauchamp [1981] also developed a method
for approximating the difference signal in this fashion; but he used only the error
from the amplitude traces). The results were inconclusive. This approach needs to
be explored further.

5. I tried, without success, to find a way to filter the original to match the quasi-low-
passed nature of the synthesized tone. What one really needs here is a time-varying
band-reject filter, because it turned out that the spectral differences could not be
characterized by a time-invariant low-pass filter alone.

6. Itried to add low-amplitude white or colored noise to the synthesized signal to make

it sound closer to the original.

Regarding item 6, Grey (1975, p. 37) also found that tape hiss present in the original recording
but missing in the line-segment approximation could allow the listener to distinguish the two.
Beauchamp (1981) likewise reported similar problems, in that in his resynthesized tones, key clicks

and “a certain roughness” (p. 323) were missing. In Experiment 1, this was not a problem, as

*This is not recommended for those using slow computers.
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resynthesis with full phase vocoder data captured all of the noise in the original. For Experiment
2, 1 had mixed success (as did Grey) with trying to add background noise from the original
recordings into the synthetic stimuli. For the violin, I ultimately added white noise at —60 dB
from the maximum of the two notes (noise limited to an absolute value of 0.001), which at least
simulated a certain “scratchiness” missing from the line-segment approximation. The lack of
noise was not so noticeable in the artificial stimuli for the clarinet and trumpet anyway; that is,
adding in white noise did not help the “low-passed” sound of those two instruments. The obvious
disadvantage of this method is that the amount of noise added is an experimental variable over
which one has no systematic control.

The slight low-passed nature of the synthetic tomes thus made it impossible to design a
same/different experiment, or an experiment in which the subjects rate how different the resyn-
thesized tome is from the original tone. The notes surrounding the transition in the test stimulus
were themselves slightly different from those in the control, which might confuse the listener in

such an experiment.

Experimental Procedure

Therefore, the preference test already discussed under Experiment 1 was used here as well. The
subjects in this experiment heard four cases, numbered 1-4 as before. The comparison cases (1 and
2) were presented 3 times each; the identical cases (3 and 4) were presented twice each. (Details
on the presentation of the stimuli are given in Appendix 3). These four cases were presented
for each of the three instruments, using both playing styles (tongued and untongued) for each
instrument. It seemed necessary to test more than one instrument, as any failing of the line-
segment approximation might well show up for one instrument or playing method but not for

another.

Results

A detailed table of the subjects’ responses will not be given here. As in Experiment 1, examination
of the raw data for the individual subjects’ mean responses showed no clear preference for either
the original or the resynthesized tones. This conclusion is supported by the subjects’ written

comments, of which these are typical:
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Table 3.6. Subjects’ Preferences in Experiment 2.

Clarinet Trumpet Violin Maximum
Case T U T U T U possible
Comparison
1 17 14 15 14 15 15 30
2 17 14 20 19 17 21 30
Identical
3 7 10 9 12 7 5 20
4 11 6 9 8 8 8 20
Note: T = tongued (with bow change), U = untongued (without bow
change).

Subject 2: “In a number of cases I heard no difference or at any rate had no
preference...”

Subject 7: “Often hard!”

Subject 10: “*Impossible!”

Table 3.6 shows how often the subjects preferred the original (cases 1 and 2) or the first
stimulus (cases 3 and 4). The right-hand column gives the maximum score possible, derived from
the number of subjects (10) times the number of presentations (3 for the comparison cases, 2
for the identical). This maximum score would be reached if all subjects preferred the synthetic
stimulus in case 1, the original in case 2, or the second of the two identical simuli in cases 3 and
4. Here again no clear-cut pattern was discernible which might suggest whether the synthesized
transition was preferred over the original. For the trumpet and violin in case 2, there is a slight
tendency to pick the original over the synthesized tone; recall that in case 2, the original was
played second. There seems to be no particular significance to this pattern in the data.

Table 3.7 gives the mean, standard deviation, and t value for each of the four cases, three
instruments, and two playing methods. Only in three instances does the ¢ value imply a probability
less than 0.05, which means that for all instruments and playing styles except the violin with no
bow change, it is safe to conclude that the observed mean does not vary from the expected mean
of 1.5 any more than one would expect from random variation. The p value for case 2 on the
tongued trumpet is not considered to be of significance, as case 1 for the tongued trumpet shows
no deviation at all from the expected mean of 1.5. Therefore, I conclude that in five of the
six instrument/playing method combinations the synthetic cases are essentially identical to the

originals.
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Table 3.7. Statistical Analysis of Experiment 2.

Case Mean s.d. t p Mean sd. t p
Clarinet Tongued Untongued
1 143 050 -0.72 153 0.50 0.36
2 160 0.49 1.10 147 050 -0.36
3 165 0.48 137 150 0.50 0.00
4 145 050 —-0.44 170 0.46 1.90
Trumpet Tongued Untongued
1 150 0.50 0.00 1.53 0.50 0.36
2 167 047 190 <0.10 163 0.48 1.49
3 155 0.50 0.44 140 0.49 -0.89
4 155 0.50 0.44 160 0.49 0.89
Violin Bow Change No Bow Change
1 150 0.50 0.00 150 0.50 0.00
2 160 049 1.10 1.70 0.46 235 <0.05
3 165 048 137 1.75 043 252 <0.02
4 160 0.49 0.89 160 0.49 0.89

Note: A mean value of 1.0 in case 1 means that the original is preferred. The same
value in case 2 means that the synthetic is preferred. In cases 3 and 4, this value
means that the first of two identical stimuli is preferred. Values may range from 1.0
to 2.0. All ¢ values imply p > 0.10 unless shown otherwise.

Analysis of variance of the other exception (violin, no bow change) is given in Table 3.8. (For
an explanation of the entries in this table, see the discussion of Experiment 1.) The responses
for case 2 were first “flipped” before this analysis of variance, so that Case 2 now represents the
preference of the original over the synthetic, as does Case 1. Thus, there were only three cases
considered for this analysis of variance. The F value of 4.25 in Table 3.8 implies that the variation
of the means in Table 3.7 for the violin with no bow change was not just random (p < 2.5%).

It is easy to accept the large amount of variation in Case 2, as Case 1 showed the expected
behavior (i.e., the mean for Case 1 in Table 3.7 was 1.5), and both cases tested the preference
of the original over the synthetic. Examination of the original data (not given here) for Case 3
showed that six of the ten subjects chose the second tone in both trials, which accounts for the
large amount of variation seen there. Such a large bias did not occur in any other instance in this
experiment. Thus the apparently large variation in the data for this one instrument and playing

style is shown to have no real significance.
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Table 3.8. Analysis of Variance for Experiment 2.

Source SS df MS F
Case 2.04 2 102 425
Error 2295 97 0.24

Totals 2499 99

Conclusion

The subjects showed no clear preference for either the original nor the resynthesized transition.
The transition resynthesized using line-segment approximations to phase-vocoder data, with the
frequency traces connected by a straight vertical line,* is perceptually interchangeable with the

transition in the original.

Overall Conclusion

The model of time-varying spectra based on Fourier methods and implemented as the phase
vocoder is adequate for analyzing and resynthesizing transitions between notes, using either the

full analysis data or line-segment approximations.

*This should answer any questions raised in Computer Music Journal 8(2), p. 11, right column, second full paragraph,
last sentence.
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OVERALL SPECTRAL AND AMPLITUDE CUES

Experiment 3: The overlapped transition

Background

From the initial data set of recordings of nine instruments, it was possible to make the general
observations already given in Chapter 2: A transition between notes involves a dip in amplitude
as well as certain spectral changes, all occuring across a given amount of time. This experiment
examines whether the amplitude and spectral changes are necessary to create a usable transition.
It also examines the amount of the time needed to change from one note to the next.

In general, to remove the amplitude and spectral changes, the end of the first note is over-
lapped with the beginning of the second note, with the amount of overlap time being the experi-
mental variable. The change in pitch alone indicates the occurrence of the transition. Clearly, it
is difficult to create a fongued transition without some sort of clue other than the pitch change.
Thus, this experiment deals only with the untongued transition.*

Preliminary work showed that it made no sense to ask the subjects to judge if a given test
transition were acceptable, as the range of acceptable transitions is wide indeed. Instead, the
subjects judged whether the test stimuli represented acceptable legato. Examining “legato” tran-
sitions is merely a means to an end. If some transitions are shown to be acceptable legatos, then
we can conclude that they are acceptable transitions. If none of the test transitions are acceptable

legatos, more work may have to be done. The possibility remains that some test stimuli might

*Mathews and Miller (1982) attempted to create a slurring effect (which is presumably closest to the untongued
case here) with synthetic tones by overlapping them. Their work will not be considered further in detail, as the

experiment described here works with natural tones.
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Figure 4.1. Experiment 3. a) Original recording of two notes. b} The end of the first note is
overlapped with the beginning of the second note.

evoke a “tongued” (or portato, or detached) percept; however, none of the test stimuli sounded

“tongued” to me, and none of the test subjects made comments to that effect in their written

notes.

Creating the Stimuli

The ascending M3 untongued recordings from the clarinet, trumpet, and violin were examined to
determine the boundaries of useful “steady-state” times in both notes. In general, the beginning
of the steady-state of the second note was spliced onto the end of the steady-state of the first note.
(These tones are thus similar to the “overlap” tones used by Mathews and Miller [1982].)

Figure 4.1 diagrams this process in detail. Point C is the end of the steady-state of the first
note; the steady-state of the second note begins at point D. The durations AC and DF are equal to
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B.5

Figure 4.2. Two violin notes, at A220 and Cf above middle C. The end of the first note has been
overlapped with the beginning of the second note using the procedure given in the text. The transition
time is 10 msec.

the desired cross-fade time. Point B lies half-way between points A and C; E is half-way between
D and F. In order to avoid nasty phase jumps in the output, points B and E are corrected to the
closest adjacent respective peaks in the waveform. The end of the first note (AC) is multiplied by
a raised cosine wave (scaled to fit within the range [+1, 0], taking the cosine from 0 to 7.) The
beginning of the second note (DF) is multiplied by a corresponding sinusoidal fade-in function.
(This method was developed by Loren Rush [1982].) The scaled waveforms are shown by dotted
lines in the figure. Points B and E are aligned, and the scaled waveforms are summed. If the
two notes are at the same amplitude, then there is no major change in amplitude during the
overlapped transition. If the peaks of the waveform are aligned as described, then the phase shift
at the transition remains unobtrusive. Figure 4.2 shows one example. The resulting two-tone pair
is shorter than the original (see Figure 4.1b). To correct for this, the steady-states of the original
recordings were extended using the methods of Appendix 2. In many cases, this whole process
proved to be more difficult than it might sound; details are given in the appendix to this chapter.

The resulting test stimuli had a transition with a change in pitch but with no appreciable
changes in amplitude or bandwidth such as one normally encounters. Six stimuli for each of three
instruments, with cross-fade times of 10, 20, 40, 80, 160, and 320 msec, resulted in a total of

eighteen test stimuli.
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Table 4.1. Analysis of Experiment 3.

Transition Clarinet Trumpet Violin
Time Mean s.d. Mean s.d. Mean s.d.
10 msec 148 0.55 140 0.53 186 044
20 1.22 0.45 140 0.53 164 0.54
40 112 0.37 134 0.52 127 048
80 110 0.35 134 0.52 122 0.45
160 1.36 0.52 162 0.54 134 0.52
320 1.70 0.52 172  0.52 166 0.53

Note: 1.00 = acceptable, 2.00 = unacceptable

Experimental Procedure

At the beginning of this experiment, the subjects heard the original untongued recordings for each
of the three instruments, played once each. The instructions stated: “You will first hear three
examples, one on each instrument, illustrating a class of acceptable legato.” For the actual trials,
the subjects were asked to judge whether the test stimulus constituted an “acceptable legato.”

(Details on the presentation of the stimuli are given in Appendix 3).

Results

Table 4.1 gives the means and standard deviations for all three instruments and six transition times.
(For the purposes of numerical analysis, the subjects’ answers of “acceptable” and “unacceptable”
were changed to 1.0 and 2.0, respectively). These data are shown in a graphic representation in

Figure 4.3. Initial inspection of this data suggested that

1. it is indeed possible to create an acceptable legato transition (and therefore an
acceptable transition, QED) while omitting all spectral and amplitude cues at the
transition. This conclusion is justified because some of the transitions were rated as
acceptable for each of the instruments.

2. some overlap times are more acceptable than others for this kind of overlapped
transition. Extremely long or short crossfade times were rated unacceptable. These
results agree with those given by Mathews and Miller (1982) for their overlapped

tones.
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Figure 4.3. Results from Experiment 3, taken from Table 4.1.

Chapter 4
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Table 4.2. Analysis of Varlance for Experiment 3.

Source SS daf MS F
Instruments (I) 25.53 5 511 2555
Crossfade times (C) 480 2 240 12.00
Instruments x Crossfade times 1084 10 1.08 5.40
Error (I x C x S) 179.33 882 0.20
Totals 220.50 899

Initial audition of the test stimuli had led me to expect these results. Especially for the
clarinet, with the very short transition in the untongued case, it seemed reasonable that a merely
overlapped transition would be adequate. Also, I expected the extremely short and long times
to be rated as unacceptable. The very long transition times sounded “muddy”, almost as though
there were an echo of the first note in the second.

The question then arose as to whether the curves in Figure 4.3 varied significantly from each
other. Analysis of variance was again used to answer this question; but in this case, two-way
analysis of variance was needed. The presentation of the results in Table 4.2 follows that given by

Hays (1963, p. 402). From this analysis I draw the following conclusions:

1. The curves in Figure 4.3 vary from each other with more than random variation,
since all three F values in the table are fairly large (p < 0.1% for all of them).

2. Since the F value in the “Crossfade times® row is so large, each curve is not “flat®:
that is, its variation from “unacceptable” to “acceptable” and back can be taken as
statistically significant.

3. The F value in the “Instruments” row is fairly large. This means that the relative
positions of the curves on the graph are significantly different. It would thus appear
that the overlapped clarinet transitions are more likely to be judged acceptable than
those for the violin or trumpet. This is consistent with the remarks of subject 7 (a
violinist), who wrote: “[I] felt like I didn’t really like any of the violin examples. Nor
did I like many of the trumpet examples. The clarinet examples seemed best.”

4. Along these lines, the value of 5.40 in the third line in Table 4.2 suggests that the
shapes of the curves for each instrument are significantly different from each other.
This means that as the crossfade time varies, the effect on the resulting transition

varies from one instrument to the next.
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Figure 4.4. Original recording of the ascending M3 on the violin, with no bow change.

Conclusion

The spectral and amplitude changes observed in recordings of instruments are not always necessary
for achieving an acceptable transition. In some cases, a simple overlap from one note to the next
will suffice. The range of acceptable overlap times varies from instrument to instrument, as does

the quality of the resulting transition.

Appendix: Creating the Test Tones for Experiment 3
Violin

There were several difficulties in creating test stimuli from the original violin recording, shown in

Figure 4.4:

e The amplitude varies widely in each note, making it difficult to find a useable steady-
state. The amplitude of the note should be more or less constant throughout the
scaled transition region (AC or DE of Figure 4.1).

e The overall amplitudes of the two notes are different.
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Figure 4.5. The recording of Figure 4.4, scaled in amplitude in an attempt to facilitate creating an
overlapped transition.

e A “phase shift” occurs between the first and second notes. This can be seen in
Figure 4.2; the relative positions of peaks and valleys shift considerably between the
notes. This makes it more difficult to avoid a “phase jump” when the notes are

overlapped, especially for longer transitions.

I first tried solving these problems by scaling the original recording to “force” both notes to
have a steady-state, using the methods of Appendix 1. The scaled waveform is shown in Figure 4.5.
The idea was to create the test stimuli using this scaled waveform, then scale the amplitudes of the
attacks and decays of the test stimuli back to those of the original. This proved to be impractical.

Using the phase-vocoder-based method of Appendix 2, I extended the first note between 0.5
and 0.9 sec by a factor of 2, and extended the second note between 1.4 and 1.6 sec by a factor of
4. The resulting signals are shown in Figure 4.6. These time-extended signals were then used to

create the test stimuli.

Clarinet

The major problem with the clarinet was in creating test stimuli with longer transition times,
because the notes were short. I first attempted to extend the steady-states using methods 1-3 of
Appendix 2; but, for the reasons given in that appendix, I could not make these methods work

satisfactorily. After the phase-vocoder method was perfected, I used it to extend the steady-states
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Figure 4.6. Extended violin tones. (top) The length of the first note (between 0.5 and 0.9 sec in
Figure 4.4) has been doubled. (bottom) The length of the second note (between 1.4 and 1.6 sec in

Figure 4.4) has been quadrupled.
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of each of the tones, and proceeded as with the violin tones. Each test stimulus had the same

duration as the original recording.

Trumpet

Here, too, it was necessary to first extend the steady-states of the notes in the original recording,
using the phase-vocoder-based method of Appendix 2.
" Neither the trumpet nor the clarinet presented the problems of widely varying amplitudes or

of large phase shifts between notes, as were encountered with the violin.



CHAPTER 5

TIME-VARYING AMPLITUDE CUES

Introduction: Isolating the Components of a Transition

- Experiment 3 in Cha.pt.er 4 showed that it is possible to create at least one sort of acceptable
transition with only the pitch change to mark where the transition occurs. This model will clearly
not work for all types of transitions. Of the four parameters of a transition (see Figure 2.42),
it was easy to show (Chapter 2) that the amount of pitch change could be omitted from further
study here. Considerable time and effort were spent in this study attempting to isolate the other
three parameters in order to study them individually in a controlled manner. It proved possible to
isolate amplitude, and this chapter is devoted to research into the role of time-varying amplitude
in creating a transition. On the other hand, it proved impossible to find ways of varying spectrum
or time in a rigorous manner without varying other parameters. This will become clear from the

discussions in this chapter.

On the Relative Importance of Amplitude vs. Time

Background

In a study lasting several months, I attempted to create test stimuli (based largely on the clarinet
and trumpet) which would answer the question of whether the gap time or the amplitude dip in
the transition is perceptually more salient. (An interactive experiment to this end was ruled out

from the start, due to the burden which such studies place upon the CCRMA system.) An answer
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Figure 5.1. Hypothetical two-dimensional surface representing variations in time gap and amplitude
dip in the transition between notes.

to this question might be of use to synthesists—it might suggest whether more attention must be
paid to one or the other factor in creating musical lines. In a larger context, this inquiry might
show what the the auditory system follows more closely at a “higher” level: amplitude or time.
It seemed reasonable to select points on a two-dimensional plane which would have gap
time as one axis and amplitude dip as another (see Figure 5.1). Using the original tongued and
untongued pairs as a starting point, the two notes could be pulled apart or moved together, and
the amplitude of the dip could be scaled up or down. The dashed oval shows the expected region
in which the original recordings (tongued and untongued) would fall. The solid line shows the
hypothetical boiunds of acceptable transitions—the right-hand line with the bulge for tongued
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notes, the other line for untongued notes. X’s mark points where test stimuli might reasonably be
generated. (Stimuli at locations marked with X’s in parentheses might not have to be generated, as
preliminary studies would indicate the reasonable limits within which test stimuli should fall.) At
each X, both the original tongued and untongued recordings would be used as a basis for creating
a stimulus. With such test stimuli, it should be possible to design experiments to delineate the
region of acceptable tongued and untongued transitions. Analysis of the data should also answer
the question mentioned earlier of whether amplitude or time is more important. For example,
there might be a wide range of amplitudes in which the transitions were acceptable, but only a

narrow range of times.

Creating the Stimuli

It was comparatively simple to make stimuli with gap times shorter than those of the original
recordings. To do so, some part of the transition was excised, and the gap was closed by simply
abutting the end of the first note with the beginning of the second. Since the durations of the
omitted signals were on the order of tens of milliseconds, and the amplitude in the transition
was quite low anyway, the splice was usually not audible. It was of course necessary to splice
right at the peak of a period (or some other reasonable juncture), in order to avoid gross phase
discontinuities; this is discussed in more detail in Appendix 1. To extend a transition, Method 1
of Appendix 2 was adequate; that is, part of the transition was simply duplicated. Again, given
the short times and the low amplitudes, the splice could not be heard as such, as long as care was
taken to match period peaks at the splice.

Lowering the amplitude of the original recording or of the test stimuli with modified gap times
presented no problems; it was at this stage that the techniques of Appendix 1 were developed.

Raising the amplitude, on the other hand, proved very difficult. The splices in the shortened
or lengthened transitions, inaudible at normal or reduced amplitudes, suddenly became clearly
audible.

Further difficulties for experimental design arose from the fact that the transitions were not
equalized, as discussed in Chapter 2. Therefore, one transition could be shortened by an amount
which was simply not available for another transition; and the amplitude dips of the tongued and
untongued originals were not matched, making the placement of stimuli on Figure 5.1 difficult.
Some of these problems were solved by limiting the amount-of contraction and extension in time,
and by calculating (separately for the tongued and untongued recordings) the change in amplitude

relative to the original amplitude level of the dip in the transition.
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Results

An initial set of test stimuli were presented to professional clarinet and trumpet players. Much
to my surprise and disappointment, each complained strongly about the quality of the resulting
transitions for his instrument. Indeed, the clarinettist crossed his legs and folded his arms as he

made comments such as:

e “Sounds like a tape splice.”

e “Strange ... sounds like a ‘hoo’ attack on the second note—which wouldn’t work. I
couldn’t duplicate that.”*

° “Sound;s like an extra pop on the second note after it’s started.”

o “Pretty good but not quite right.”

Figure 5.2 shows these and other comments by the clarinetist placed according to the arrange-
ment of Figure 5.1. Comments preceded by T are for transitions created from the original tongued
recording; U shows where the untongued recording was the starting point. The change in dB is
relative to the amplitude of the transition in the original recordings. (Recall from Table 2.2 that
these two transitions differ by about 24 dB). The disparity of responses at 30 msec between the
original U and the foreshortened T is striking. What’s worse, for all of the stimuli derived from
the untongued notes, the clarinettist remarked that “they all sound tongued.”

The trumpeter offered similar comments, paraphrased here:

o I can hear a discernible attack on the first note but not on the second.
o Students sometimes overdo tonguing with a syllable when their embouchure is weak.
e Students will lift off the air to get over a wide interval. I tell them to “keep the air

going.”

Of course, both players found some of the tones to be acceptable or even quite good. Indeed, the
trumpeter remarked that some differences between adjacent stimuli would be hard to duplicate,
even for a good player. But the the locations of acceptable tones on the plane of Figure 5.1
varied widely, depending on the instrument and which original recording was used. The solid

line in Figure 5.2 shows a tentative “acceptable” region for modifications to both the tongued

*Ppiston (1955, p. 120) refers to this as a “htu” attack.
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Figure 5.2. Remarks on clarinet test stimuli created to fall on selected points of Figure 5.1.
(T: created from the tongued recording: U: from the untongued recording).

and untongued recordings. Contrary to what was expected (see Figure 5.1), these regions do not

even overlap! This experience lead to the conclusion that it was impossible to systematically vary

both amplitude and time independently without incurring unpredictable changes in the perceived

transition. No other experimental paradigm could be found to test the question of the relative

importance of time vs. amplitude, so further work on this question was abandoned. Still, the

effort was not a complete loss, since this work was a direct precursor of some of the experiments

which follow in this chapter and the next.
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Figure 5.3. Tongued trumpet transition, with amplitude envelope. (X-axis: number of samples, at
sample rate of 25600 Hz)

Extending the time between the notes

The gap time between notes has been listed (Chapter 2) as one of the parameters of a transition.
It would be interesting to leave the amplitude and spectral cues in place and vary only the gap

time.

Creating the Stimuli

In an attempt to study this, I worked with the trumpet tongued ascending M3. The transition,
shown here again in Figure 5.3, lasts approximately 60 msec. Initially, I moved the notes apart
to see whether at some point they would sound completely detached. By detached, I mean a
transition which sounds as though the player has deliberately performed two separate notes; two
eighth notes, perhaps, separated by an eighth note rest, or two notes performed portato.

Of course, when the notes are moved apart, something must be supplied to fill the resulting
gap. Using Method 2 of Appendix 2, I tried extending the transition at several places. It was
impossible to isolate usable “periods® in any part of the region D-F in -Figure 5.3, which seemed

the logical place to start (F is the point of pitch change). Extending the period at E in Figure 5.3,
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Figure 5.4. (top) The transition of Figure 5.3 has been extended at point B in that figure by about
60 msec, effectively doubling the length of the transition between the notes. (bottom) The extension
here is 120 msec.

for example, produced a signal which was unusable because the periodicity implied by the period
peaks in that region produced a pitch different from that of the first note.

So for this preliminary study I used the periods delineated by the peaks A~-B-C in Figure 5.3.
Extending this region by 60 and 120 msec, to double and treble the transition gap time, produced
the transitions shown in the top and bottom of Figure 5.4, respectively. (This representation was
chosen to highlight the location of individual samples, each of which is marked by an “x”. In this

manner, the exact location of each period peak is made clear. The dark region in the center of
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Figure 5.5. (top) The upper waveform in Figure 5.4 has been scaled in amplitude to match the
amplitude envelope given by points C-F in Figure 5.3. (bottom) This same envelope has been applied
to the bottom waveform from Figure 5.4.

each plot of course results when many x’s overlap.) Neither of the extended transitions in the
figure sounds particularly detached.

Using the methods discussed in Appendix 1 (where another example from this study is
presented), I then applied the amplitude envelope of the original decay to the “barrel” extensions
shown in Figure 5.4. The resulting transitions are shown in Figure 5.5. Figure 5.6 shows a

different envelope that was applied to the 60-msec case of Figure 5.4a. Attempts to produce a
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Figure 5.6. Another representation of the extended waveform from the top of Figure 5.4. An amplitude
envelope different from that used in Figure 5.5 is also shown (solid line).

tone with a similar “softer” decay for the 120-msec extension proved impossible, as artifacts of
the extension process became audible, and/or the results simply did not sound natural. At any
rate, one would expect any amplitude-envelope-dependent effects to be even more pronounced for

a longer extension.

Results

Both of the transitions in Figure 5.5 sounded detached. The “softer” envelope of Figure 5.6 did
not sound detached. This produces the unexpected and in;:eresting result that in exztending the
region between two tongued notes, the shape of the decay plays a very simportant role.

Similar studies of the violin bow-changed transition (shown in Figure A1.3) as well as of the
clarinet (Figure A2.2) showed that the same effects occured for different instruments. From this
work I have concluded that it is impossible to isolate the length of time between notes from the
shape of the amplitude envelope of the decay of the first note (and probably of the attack of the
second note as well). These factors interact in ways which made empirical study of the role of

time impossible here.
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Experiment 4: Amplitude Dip without Spectral Cues

Background

Experiment 3 demonstrated that it is possible, within certain bounds, to create an acceptable
(legato) transition without any spectral or amplitude cues. Perhaps it would be possible to create
other kinds of transitions simply by introducing an appropriate amplitude dip while still omitting

the spectral cues. This experiment is designed to examine that possibility.

Creating the Stimuli

The overlapped untongued tones from all three instruments, with 20-msec overlap times, were
used from Experiment 3. Similar tones with the same overlap time were created from the original
tongued recordings of all three instruments as well.

These stimuli were prepared before the results for Experiment 3 were available. Thus, I had
to choose one of the transitions from that experiment to use as a starting point for this experiment.
At the time, it seemed reasonable to use the 20-msec crossfade, even though Experiment 3 later
showed that this transition was not as acceptable as transitions with longer crossfade times. The
procedure described below was tried with an 80-msec crossfade using the no-bow-change violin
recording, but no difference between it and the test stimulus prepared from the 20-msec transition
could be heard, so further attempts with other overlap times were not pursued. In general, the
transitions of Experiment 3 changed remarkably for the better once the amplitude envelope was
applied.

The six overlapped tones were extended to the length of their respective originals, so that the
change in pitch occurred at the same time as in the original. In all cases, the steady-state portion of
both notes had to be extended, as described in the Appendix of Chapter 4. Unfortunately, neither
of the first two methods of Appendix 2 could be made to work for the second note of the trumpet
tongued case (and Method 5 had not yet been developed); I tried two different recordings. These
methods apparently failed because the steady-state of the second note was so short; the phase
drift even across a few periods was so great that a reasonable-sounding extension was impossible
to achieve with the methods then available. Pursuit of this question is beyond the scope of this
dissertation; this topic was not explored further. Thus, for this experiment (and for Experiment 5),
only the following five transitions were included: clarinet tongued and untongued; violin with and

without bow change; and trumpet untongued.
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The amplitude envelopes of the originals were calculated using the peak-finding method dis-
cussed in Chapter 2. These amplitude envelopes were applied to the overlapped transitions. It is
necessary to be extremely careful with the placement of the amplitude dip relative to the center
point of the overlapped transition (the nominal point of pitch change). That center point must
fall where the amplitude of the attack of the second note begins to rise. The result was a set of
five two-note test stimuli with amplitude dip and pitch change in the transition matching those
of the original, but without the spectral cues in the decay and attack of the original. The control
stimuli were of course the original recordings.

It should be noted in passing that some of the test stimuli sounded a little unnatural. For
example, in brass tones generated in this manner, there was an effect which I heard as “reverber-
ation” (and others heard as “comb filtering®) at the end of the first note. Recall from Chapter 2
that the ear expects the spectrum to fall off with the drop in amplitude. My interpretation of this
unexpected percept is that the ear “hears” the fall in amplitude without concomitant change in
spectrum as reverberation. In a mildly reverberant environment, one would expect a drop in am-
plitude without a gross falloff in spectrum for several tens of milliseconds, which is approximately

. what happens here.

Experimental Procedure
The subjects heard four cases, each consisting of two stimuli separated by a short pause:

Comparison cases

1. Original recording vs. synthetic (amplitude envelope applied to overlap)
2. Synthetic vs. original

Identical cases

3. Original vs. itself

4. Synthetic vs. itself

The subjects were asked to rate these cases on a scale of 1 to 7, with 1 meaning that the stimuli
were identical, and 7 representing the greatest perceived difference. A series of training examples
presented at the beginning of the experiment included what I felt were the greatest possible
differences. The comparison cases (1 and 2) were presented 3 times each; the identical cases
(3 and 4) were presented twice each. (Details on the presentation of the stimuli are given in
Appendix 3). As before, the identical cases are included to check for subject bias toward the first

or second stimulus in each pair.
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Table 5.1. Analysis of Experiment 4.

Clarinet Trumpet Violin

Case U T U U T

Mean s.d. Mean s.d. Mean s.d. Mean s.d. Mean s.d.
Comparison
1 3.10 1.73 430 292 490 1.86 480 212 433 1.89
2 3.30 1.87 593 1.64 293 158 4,67 2.05 457 212
1&2 3.20 4.67 3.92 473 445
Identical
3 3.00 147 2.60 1.77 2.32 159 2.75 1.68 260 1.25
4 2.58 1.40 235 134 261 1.48 270 1.44 265 1.58

Note: U means untongued (no bow change), T means tongued (with bow change). “1 & 2
show the combined mean of Cases 1 and 2.

Results

Table 5.1 shows the means and standard deviations across all subjects for the five transitions
studied here. The means for the identical cases (3 and 4) show that for all transitions, the subjects
showed some bias toward hearing identical stimuli as different. This result, although unexpected,
does not prohibit analysis of the data, as will be shown below.

Some order effects are noticeable. The comparison cases (1 and 2) are especially different for
the trumpet untongued transition. Still, no consistent pattern for order effects can be found in
the data, and so the combined comparison cases (in the row labelled “1 & 2” of Table 5.1) will be
used in what follows.

Examination of the means for the comparison cases shows that they seemed to be larger than
the means for the identical cases, indicating that the subjects seemed to find a noticeable difference
between the original and synthetic cases. The untongued clarinet transition was the one possible
exception.

The ¢ test and analysis of variance were applied to see if the combined mean for the com-
parison cases differed significantly from the means of the identical cases. The results are given in
Tables 5.2 and 5.3, respectively. The analysis of variance presented here follows the format given
by Hays (1963, p. 372) already encountered in Chapter 3. (The values for df vary because some
responses were missing; see Appendix 3.) The ¢ value for the clarinet untongued transition implies
p > 5%. The same tendency (p > 10%) is shown by the analysis of variance for that transition
(see Table 5.3). Thus, it remains unclear whether the subjects truly found that the synthetic stim-
ulus was significantly different from the original stimulus for the untongued clarinet. This is not

too surprising, as the untongued clarinet transition (Figure 2.4) was perhaps the smoothest and
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Table 5.2. t test for Experiment 4.

Clarinet Trumpet Violin

Case U T U U T

N t B t In t w t u t
Comparison
1&2 280 18 248 1156 246 6.14 273 829 263 17.68
ldentical
3 0.71 0.34 —0.43 0.07 —0.10
4 -0.75 —0.46 0.46 -0.07 0.08

Note: u. the expected mean of the overall population, is taken as the mean of cases 3 and 4
for each instrument, given in Table 5.1. N = 100.

quickest of the five transitions used here. For all other transitions, however, the difference in the
means between the comparison cases and the identical cases seems to be statistically significant,

given the high ¢ and F values in Tables 5.2 and 5.3, respectively.

Discussion

No particular significance can be attached to the absolute value of the means for the comparison
cases (1 and 2). It is surprising that thesg means did not take on a higher value. Examination of
the raw data shows that all but one subject used the full range available. That subject (4) was
not able to fit the stimuli onto the scale of 1-7; in other words, he found the scale to be too large

for the stimuli. Here are his written comments:

I'listened to the test tones (twice) and tried to find your “ruler”. In other words, as you
will note by looking at my resulting scores on the “training tones,” I did not perceive too
much change in any of the 8 two-note pairs. Isimply feel (and with some embarrassment)
that your perception of transition is much more finely attuned [than mine).

In the actual experiment, I think you’ll see a range of scores between 1 and 4. Can

you convert this to your 1 to 7 scale?

As the results of the experiment were clear enough, I did not attempt to rescale the responses of
this or the other subjects, nor did I attempt to weed out “unsatisfactory” subjects before subjecting
the data to further analysis.

Another factor may have been that this was the first experiment on the tape. It was apparently
hard for some subjects to adjust to the kind of listening required, and perhaps this experiment

showed such difficulties more than the ones which followed. For example, subject 1 reported:
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Table 5.3. Analysis of Variance for Experiment 4.
Clarinet Tongued Clarinet Untongued
Source SS daf MS F p Source SS af MS F P
Presence of Presence of
Spectral Cues 11591 2 5796 2695 <0.14% Spectral Cues 5.61 2 281 118 >10%
Error 20868 97 215 Error 22823 96 2.38
Totals 32459 99 Totals 233.84 98
Trumpet Untongued
Source S§S af MS F P

Presence of

Spectral Cues 5084 2 2542 892 <0.1%

Error 273.49 96 2,85

Totals 32433 98

Violin Bow Change Violin No Bow Change
Source SS af MS F P Source SS daf MS F P

Presence of . Presence of
Spectral Cues 7872 2 3936 1497 <0.1% Spectral Cues 96.83 2 4842 1641 <01%
Error 249.70 95 263 Error 28568 97 295
Totals 32842 97 Totals 38251 99

I personally feel better about my judgement on the last 20 or so examples. Took a while

to start concentrating on the transition ...

Conclusion

Except for the untongued clarinet transition, the subjects definitely noticed a difference between

the original recording and the synthetic transition containing the original amplitude changes but

with the spectral changes in the transition removed. Therefore, the subjects noticed the absence

of spectral cues except when the transition was very smooth or very quick (as in the untongued

clarinet transition).
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Figure 5.7. Experiment 5. a) Idealized amplitude envelope of transition. b)-d) Variations in the
minimum amplitude of the transition.

a)

Experiment 5: Variations in Amplitude Dip

Background

Ideally, one would like to vary the amplitude of a transition while keeping changes in spectral
and timing information to a minimum. The discussion earlier in this chapter showed that this
is difficult to do. Another difficulty arises with natural tones: If the amplitude of a transition is
raised, then the amplitude of the spectral cues in the transition will be raised as well. It quickly
became clear that amplifying, say, the sound of the bow change in the middle of the transition
was not going to be useful for experimental investigations, as the results were ugly indeed.

Still, the question remains: For both the tongued and the untongued transitions, how far
can the amplitude dip be raised or lowered from what occurs in nature, while still producing an
acceptable transition? In particular, does lowering the amplitude to O result in the percept of
separated notes? This has immediate practical interest, of course, for composers and performers
using digital synthesizers. To answer this question, this experiment (like Experiment 4) uses the
overlapped transitions of Experiment 3, that is, a transition with no special spectral cues at all. In
this manner, it is possible to raise the amplitude of the transition without introducing the kinds
of distortion just mentioned.

Initially, it seemed reasonable to assume that the transition followed a shape such as given in
Figure 5.7a. Test stimuli could be created by raising and lowering the amplitude floor, as shown in
Figure 5.7b—d. Recall that the recordings had an effective noise floor of about —60 dB. It seemed
reasonable to create test tones with amplitude dips at —12 dB intervals. One extreme would be a
test tone with no amplitude dip (as in Experiment 3). The other extreme, substituting for a test
tone with a —60 dB dip, would be a test tone with 0 amplitude in the transition (this case will be
called —oo dB here).
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Preliminary work showed that the vertical edge of Figure 5.7a was inappropriate when the
amplitude dip grew large—a click was of course produced. Even worse was the fact that for
some instruments, the transitions of 0 dB and —12 dB produced inadequate upward variation in
the amplitude of the transition; as shown in Table 2.2, the minimum of the untongued clarinet

transition lay at a mere —13 dB.

Creating the Stimuli

Therefore, amplitude dips were selected for the following values, relative to the amplitude of 0.75

to which all two-tone recordings were equalized:

0 dB (no dip)
-7.5 dB
-15 dB
-30 dB
—45 dB
—oo dB

Thus, six test stimuli were created for each of the five transitions. (As in Experiment 4, the
trumpet tongued transition was omitted).

Furthermore, the simplistic model of Figure 5.7 was modified, as shown in Figure 5.8. For the
first note, all amplitude values before and including point 1 in Figure 5.8 remained unchanged in
each test stimulus; the same was true for all amplitude values including and after point 6 for the
second note. Points 3 and 4 in the figure took on the required amplitude value from the list just
given. As for the other points, consider point 2. In the 0 dB case, it lay on the same horizontal line
as the other points. For the other cases, point 2 moved down as point 3 moved down, but point 2
never moved down farther than the amplitude of the original in the first note at that point. For the
second note, point 5 behaved in the same way. Points 1 through 6 differed in time and amplitude
for each transition, and were determined by inspection. The times for each of the transitions are
summarized in Table 5.4. The six amplitude curves for each of the five transitions are shown in
Figure 5.9. To create the thirty test stimuli, then, the envelopes in Figure 5.9 were applied to the
corresponding (20-msec) overlapped transitions already encountered in Experiments 3 and 4. The

control stimuli were the original recordings of the five transitions in question.
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Figure 5.8. Model of amplitude during transition between notes, adopted for Experiment 5.

Table 5.4. Transition times for Experiment 5.

A B C D E
Clarinet tongued 348 1040 567 1082 463
14 41 22 42 18
untongued 116 321 266 642 554
5 13 10 25 22
Trumpet untongued 819 588 257 1430 3560
32 23 10 56 139
Violin  bow change 811 682 479 1484 907
32 27 19 58 36
no bow change 1386 301 1118 387 459
54 12 44 15 18

Note: For each transition, the first line gives number of samples; the second line gives

time in milliseconds. The letters refer to the segments in Figure 5.8.

Experimental Procedure

As in Experiments 1 and 2, the subjects were asked to state a preference for one of two stimuli.

For each transition, the six test stimuli and the control stimulus were arranged in the 19 cases

given in Table 5.5. For each of the five transitions, the comparison cases (1-12) were presented

three times each; the identical cases (13-19) were heard twice each. (Details on the presentation

of the stimuli are given in Appendix 3.)
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Figure 5.9. Amplitude envelopes used to generate test tones for Experiment 5. Top: Clarinet tongued
and untongued. Middle: Trumpet untongued. Bottom: Violin with and without bow change. All plots
show 250 msec on a 60 dB scale.
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Table 5.5.
The Cases for Experiment 5

Comparison cases
1. 0 dB test simulus vs. original

2. —7.5 dB test simulus vs. original
3. —15 dB test simulus vs. original
4, —30 dB test simulus vs. original
5. —45 dB test simulus vs. original
6. —oo dB test simulus vs. original
1. Original vs. 0 dB test simulus
8. Original vs. —7.5 dB test simulus
9. Original vs. —15 dB test simulus
10. Original vs. —30 dB test simulus
11. Original vs. —45 dB test simulus
12, Original vs. —co dB test simulus

Identical cases

13. 0 dB test simulus vs. itself
14. —17.5 dB test simulus vs. itself
15. —15 dB test simulus vs. itself
16. —30 dB test simulus vs. itself
17, —45 dB test simulus vs. itself
18. —oo dB test simulus vs. itself
19. Original vs, itself

Results

For numerical analysis, the values of 1.0 and 2.0 were assigned to the subject’s preference for
the first and second stimulus, respectively. Examination of the responses showed no significant
differences between comparison cases 1-6 on the one hand and comparison cases 7-12 on the other,
so any order effects in the first 12 cases will be disregarded. For the (combined) comparison cases,
aresponse of 1.0 indicates that the synthesized stimulus was preferred. Table 5.6 shows the means
and standard deviations for all five transitions.

Recall from Experiments 1 and 2 that a mean response of (in this instance) 1.5 showed that
the subject had no preference for either stimulus, or perhaps could not distinguish between the
stimuli. In the cases of two identical stimuli, a mean of 1.5 was expected.

In the data for the identical cases in Table 5.6, some order effects can be seen. That is, in
some instances the subjects consistently preferred the first or the second of two identical stimuli.
However, no pattern in this data can be found by inspection of the raw data. This conclusion is

supported by analysis of variance of the identical cases (Table 5.7). As in Experiment 3, two-way
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Table 5.6. Results of Experiment 5.
Clarinet Trumpet Violin

Case T U ‘U T U

Mean s.d. Mean sd. Mean s.d. Mean s.d. Mean s.d.
Comparison
1&7 185 0.43 1.80 0.47 195 0.34 1.68 0.52 1.85 0.43
2&8 197 031 167 0.52 193 0.36 1.77 0.49 190 0.39
3&9 187 0.42 167 053 190 0.39 170 0.51 1.85 0.43
4 &10 1.72 051 165 0.53 187 0.42 167 0.52 193 0.35
5&11 1.58 054 1.73 0.50 183 0.45 168 0.52 195 0.34
6 & 12 163 053 1.70 051 1.83 045 163 053 193 0.36
Identical
13 155 0.62 140 0.60 150 0.62 1.40 0.60 1.50 0.62
14 1.40 0.60 1.50 0.62 140 0.60 145 061 1.35 0.58
15 145 0.61 150 0.62 135 0.58 160 0.62 1.70 0.61
16 130 0.56 165 0.62 145 061 155 0.62 1.20 0.49
17 160 0.62 155 0.62 145 061 145 061 1.25 0.53
18 130 0.56 150 0.62 125 053 165 0.62 1.40 0.60
19 145 0.61 140 0.60 165 0.62 1.60 0.62 1.70 0.61

Note: T means tongued (with bow change), U means untongued (no bow change). Results for
cases 1-6 have been combined with those for cases 7-12. A value of 1.0 in the comparison cases
means that the synthesized stimulus was preferred; 2.0 shows a preference for the original. In
the identical cases, 1.0 and 2.0 indicate a preference for the first and second stimulus presented,

respectively.

Table 5.7. Analysis of Variance
of ldentical Cases in Experiment 5.

Source SS df MS F
- Amplitude Dip (A) 1.64 6 0.27 108
Transition (T) 111 4 028 112
Transition x Amplitude Dip (TA) 867 24 036 1.44
Error (A x T x TA) 162.95 665 0.25
Totals 17437 699

analysis of variance (Hays 1963, p. 402) is required. All of the F' values imply p > 20%. Thus,

order effects in the identical cases will be disregarded here.

A graphic representation of the (combined) data for the comparison cases is given in Fig-

ure 5.10. All of the points for all of the transitions lie in the range of 1.5-2.0, which means that

the subjects preferred the transitions which included spectral cues in all cases, for all instruments.

The x’s in the figure show the amount of amplitude dip in the original transitions, taken from

Table 2.2. For three of the five transitions, the subjects preffered transitions with amplitude dip
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Figure 5.10. Mean responses for combined comparison cases in Experiment 5.

at or lower than that of the original. That is, three of the curves show a downward trend toward
the x’s in the figure. This effect is especially striking for the tongued clarinet transition, and may

explain the unusual shape of the tongued clarinet curve in the figure.
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Table 5.8. Analysis of Variance of
Comparison Cases in Experiment 5.

Source SS df MS F P
Amplitude Dip (A) 2.43 5 049 306 <05%
Transition (T) 15.02 4 376 2350 <0.1%
Transition x Amplitude Dip (TA) 7.43 20 037 231 <01%
Error (A x T x TA) 275.48 1770 0.16
Totals 300.36 1799

The question then arises as to whether the curves in Figure 5.10 vary significantly from each
other. Two-way analysis of variance (Table 5.8) was again used to answer this question. From

this analysis I draw the following conclusions:

1. Given the F value in the “Amplitude Dip” row, the curves change more than one
would expect from random variation; that is, the curves are not “flat.”

2. The mean values for each transition are significantly different from each other, as the
F value in the “Transition” row is so large. Again, as in Experiment 4, the untongued
clarinet appears less susceptible than the other instruments to the modifications
made in this experiment.

3. The F value in the third line suggests that the shapes of the curves in Figure 5.10 for
each instrument are significantly different from each other. Thus, each instrument

reacts to the change in amplitude dip in its own way.

Still, no pattern could be found which characterizes the behavior of all three instruments as the
amount of amplitude dip changes. (Recall that in Experiment 4, all of the instruments followed
more or less the same pattern). The possibility remained that one or more subjects might have
given biased answers which would then cloud the data, making a pattern unrecognizable.

Examination of the raw data suggested that this might indeed be the case. Table 5.9 shows
the data for the comparison cases. The entries in the table show how often the subject preferred
the original over the synthesized transition; the maximum possible score was 6.

The asterisks mark data which might be questioned. Consider subject 4’s responses for the
tongued clarinet transition. In all but 3 of the 36 possible responses, he preferred the original, no
matter how the transition was modified.

A column of data for a given transition has been marked with an asterisk if the responses

satisfy two criteria: 1) At least 3 of the 6 entries for a transition must be 6, and 2) the other 3



Chapter 5

10

Subject Number

Table 5.9. Preference for Original in
Comparison Cases of Experiment 5.

Clarinet tongued

Case

138

O©OOWOMOm

O O W WYL

OO OMmMMw

O O W WY IN Y

W WO YW WYY

NTO WO

L © O Y 1L

MO M

WO OFTmm

O OOoMmMmL

O -~
N O -
L
OO O

Clarinet untongued

W<t < < N

N O WY Ooun

UV N TN

UM > F

O WL YW

YN O =M

W0 AN LWL O LW

NN M < O LO

O < WKV < <O

O MNet N =IO

O -~
M 0O O v v v
L R
-oNm I ©

*

*

Trumpet untongued

O O WL YL

© WWW YWY

O O YW <

O YWOwwo

O W YW WY

MW N M N -

O W WOt L

O MW mL

© O WYY

O W WL WY

O -
M~ O -
L I
- N MO

Violin bow change

N O v v

© YWt

O MANNMON

O W WYY

O OWYW WL O

MU ANW LM

O FLLONM <

O =EHLW -0

1 O WL O

N O YW

1&7
2&8
3&9
4 &10
5&11
6 & 12

*

Violin no bow change
*

O W LYWL Y

O YW W YWY

Y LO LY O O O

O YW WYY

W)W YW WYL

M < N WY WY

<+ LW O

TN FTON




Time-varying Amplitude Cues 139

Table 5.10. Results of Experiment 5,
Omitting Subjects 6, 7, and 9.

Clarinet Trumpet Violin

Case T U U T V)

Mean sd. Mean sd. Mean s.d. Mean sd. Mean s.d.
Comparison
1&7 1.79 050 1.74 0.52 193 0.40 1.69 0.54 1.83 0.47
2&8 195 0.37 155 056 191 0.42 1.74 052 1.88 0.44
3&9 181 049 152 0.56 186 0.46 169 057 181 0.49
4&10 167 054 157 0.56 183 0.47 162 055 191 0.42
5&11 148 0.56 167 054 1.79 0.50 164 0.55 1.93 0.40
6 & 12 162 055 169 0.54 181 0.49 1.57 0.56 101 0.42
Identical
13 1.71 0.67 157 0.67 1.71 0.67 143 0.65 1.50 0.67
14 150 0.67 157 0.67 150 0.67 1.50 0.67 1.36 0.62
15 150 0.67 157 0.67 150 0.67 157 0.67 1.79 0.65
16 1.29 0.59 1.50 0.67 1.50 0.67 157 0.67 1.14 0.48
17 171 0.67 164 0.67 1.57 0.67 143 0.65 1.29 0.59
18 1.29 059 157 0.67 1.36 0.62 186 0.63 1.50 0.67
19 150 0.67 150 0.67 157 0.67 157 0.67 1.71 0.67

Note: U means untongued (no bow change). T means tongued (with bow change). Results for
cases 1-6 have been combined with those for cases 7-12. A value of 1.0 in the comparison cases
means that the synthesized stimulus was preferred; 2.0 shows a preference for the original. In
the identical cases, 1.0 and 2.0 indicate a preference for the first and second stimulus presented,
respectively.

entries must be § or 6. The subject’s data was removed for further analysis if his responses for
at least four of the possible five transitions satisfied these criteria. This was the case for three
subjects: 6, 7, and 9. Table 5.10 shows the means and standard deviations for all five transitions,
omitting these three subjects. As in Table 5.6, no order effects can be seen for the identical cases
(13-19), so these cases will not be discussed further here.

A graphic representation of the data for the (combined) comparison cases, omitting subjects
6, 7, and 9, is given in Figure 5.11, which should be compared with Figure 5.10. The effects of
removing the three subjects can be seen in Figure 5.11; each of the curves shows a wider variation,
although the overall shape remains the same for each curve. In fact, the two clarinet curves lie
much closer to (and in one instance cross) the mean value of 1.5, indicating that for this population
the preference of the original over the synthesized transition was not as strong. Still, all but one
of the points for all of the transitions lie in the range of 1.5-2.0. Thus, even after those subjects
who consistently chose the original have been removed, I conclude that the subjects still preferred

the transitions which included spectral cues in almost all cases, for all instruments.
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Figure 5.11. Mean responses for combined comparison cases in Experiment 5, omitting subjects 6, 7,
and 9.
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Table 5.11. Analysis of Variance of Comparison
Cases in Experiment 5, Omitting Subjects 6, 7, and 9.

Source SS daf MS F P
Amplitude Dip (A) 2.00 5 040 222 <5%
Transition (T) 13.14 4 329 18.28 <0.1%
Transition x Amplitude Dip (TA) 726 20 036 200 <05%
Error (A x T x TA) 216.33 1230 0.18
Totals 238.73 1259

The question then arose as to whether the curves in Figure 5.11 vary significantly from each
other. Two-way analysis of variance was once again used to answer this question. Table 5.11
shows the results. Comparison of this table with Table 5.8 suggests that removing the data for
subjects 6, 7, and 9 does not modify the conclusions reached earlier.

The possibility still remained that a pattern in the data might be obscured because some
subjects might prefer, say, the synthesized transition for one instrument but not for another. To
test this, all of the data marked with an asterisk in Table 5.9 was removed. In other words, only

the following subjects were included for each transition:

Clarinet tongued: 1235810
Clarinet untongued: 123457810
Trumpet untongued: 3458

Violin bow change: 12345810

Violin no bow change: 345

Analysis of this data led to the same conclusions as those already reached, so a detailed discussion

of this reduced data set will be omitted here.

Conclusions

When presented with the choice between the original transition or a transition containing only
some change in amplitude, some subjects always preferred the original transition, and other sub-
jects in general preferred the original. As in Experiment 3, the effects observed were weakest for
the untongued clarinet transition, probably because of its extremely short duration.

This conclusion serves to modify the conclusions for Experiment 3. Recall that in that ex-
periment, the subjects found that a transition with no amplitude dip and with no spectral cues

was acceptable. Here, the subjects showed that they preferred the original in such instances (top
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line in Table 5.6, left-most data points in Figure 5.10). Thus, even though a transition without
spectral cues may be acceptable, a transition with spectral cues is preferred.

The effect of raising or lowering the amplitude dip in the transition is different for each instru-
ment. No matter how large the dip in amplitude in the synthetic stimulus, subjects consistently
preferred the original transition, which suggests that amplitude cannot be adjusted to compensate
for missing spectral cues. For practical work, the time-varying spectral changes associated with
a transition should be included, at least for transitions from instruments that are familiar to the
subject.

In general, the amplitude dip for both tongued and untongued transitions should lie in the
range of about —10 to —40 dB found in the original stimuli (see Table 2.2). Raising the amplitude
above about —10 dB (relative to the maximum of either note) is not recommended, based on the
data analyzed here.

The transitions in Figure 5.10 fall into two convenient groups for the —co dB transition:
The two tongued transitions (violin with bow change plus clarinet tongued) lie together, with the
three untongued transitions lying closer to the top of the figure, indicating a preference for the
original stimulus. It may be that tongued transitions can be successfully created with absolute
silence between the notes, without causing the notes to be heard as separate; but this is not

recommended for untongued transitions.

Experiment 6: Slope

Experiment 5 examined the effects of changing the amplitude in the transition, especially at the
bottom of the “dip” in the transition. The discussion on pp. 121124 examined the effects of
moving the two notes apart. It would also be interesting to examine what happens when the
dip at the bottom part of the note remains unchanged, but the “shoulders” in the transition are
moved back and forth in time. By “shoulder”, I mean lines A, B, D, and E in Figure 5.8. Initial
investigations failed to find a useful way of using the times of the “shoulders” as an experiment
variable. The slope of the decay of the first note and of the attack of the second thus became the
focus of this study. As is often the case, the search for an experiment followed a twisted path,

which will be traced here before the experiment itself is presented.



Time-varying Amplitude Cues 143

Preliminary Studies

Figure 5.12 shows an enlarged view of the clarinet tongued and untongued ascending M3 tran-
sitions. Point 1 in the figure was chosen to mark the start of the decay of the first note; point
2 marks the end of the decay. The attack of the second note begins at point 3 and finishes at
point 4. As in other studies, these points were chosen to lie on the peak of a period. Table 5.12
summarizes the characteristics of the points and the lines which connect them. At this stage, the
choice of points 3 and 4 was influenced in part by a desire to have them more or less equal in
amplitude, facilitating a comparison between the tongued and untongued transition.

The first step is to investigate what happens when the slopes of lines A and C are modified.
This model has the advantage of leaving the region between points 2 and 3 unchanged as the
slopes of lines A and C vary. Figure 5.13a shows the amplitude envelope which would result if
point 1 were moved to the right by 1/2 of the time between points 1 and 2, and point 4 were
moved to the left by 1/2 of the time between points 3 and 4. Since the original duration of line
A was about 20 msec, point 1 was moved by 10 msec; by the same reasoning, point 4 moved
by about 6 msec. Given the short durations of lines A and C, it seemed impractical to attempt
finer adjustments of points 1 and 4. If these points are moved by the same respective amounts in
the other direction, the result would be as shown in Figure 5.13b. More drastic changes can of
course be made; Figures 5.13c and 5.13d show the results when these points are moved by 50 and
100 msec, respectively.

Working in this manner, I settled on the following displacements for points 1 and 4:

. +10 msec or 1/2 of the duration of A or C in Figure 5.12, whichever is smaller.
0 msec (i.e., original)
—10 msec

—50 msec

MY oW

—100 msec

—200 msec

Q =

—300 msec

The letters match those in Figures 5.14 and 5.15, which show the resulting amplitude envelopes
for the tongued and untongued clarinet transition.

The methods discussed in Appendix 1 were used to create test stimuli whose amplitude
envelopes followed those shown in Figures 5.14 and 5.15. Stimuli with envelopes A and C were

difficult if not impossible to distinguish from the originals. Envelope D produced a slight softening
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Preliminary study for Experiment 6. a) Detail of the tongued clarinet transition of

b) Detail of the untongued clarinet transition of

Table 5.12. Clarinet Transitions in Experiment 6.

Amplitude (dB)

Point Tongued Untongued
1 -1 -1
2 -12 -1
3 -14 -1
4 -2 -3
Tongued Untongued
Duration Slope Duration Slope
Line (sec) (dB/sec) (sec) (dB/sec)
A 0.023 —478 0.012 -916
B 0.072 0.010
C 0.025 480 0.021 381

Note: Points 1-4 and lines A, B,

and C are shown in Figure 5.12.

Amplitude values are relative to two-note maximum of 0.75.
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Figure 5.14. Amplitude envelopes for modifying tongued clarinet transitions. b) is a closeup of a).

of the attack and decay. The most pronounced effect occurred with envelopes E, F, and G; for the
decay of the first note, they produced a diminuendo effect, as though the player were purposefully
softening the end of the note. A corresponding effect, like the “reverse envelope” in rock guitar,
occurred for the attack of the second note—as though the player were *‘swelling into” the note.
Furthermore, the change in slope did not cause the untongued transition to become tongued, as

one might expect, say, for envelope G in Figure 5.15, with its wide gap between the notes.
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Figure 5.15. Amplitude envelopes for modifying untongued clarinet transitions. b) is a closeup of a).

Lengthy consideration of these test stimuli led to the conclusion that it was impossible to
design any experiment using these stimuli which would answer any useful questions. The possibility
remained that an experiment could be designed to test whether the subject was more sensitive to
changes of this kind in one area than in another. The overall effect on the attack of the second
note seemed to be the same as the effect on the decay of the first note, so the next study was
limited to just the attack of the second note. Five groups of three amplitude envelopes each were

generated (see Figure 5.16). The timing of the center envelope in each group was the same as that
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used earlier; the ends of the other two envelopes were shifted by 10 msec from that center time.

This resulted in envelopes for which point 4 of Figure 5.12 varied from its original value by

—10 msec
0 (i.e., no change)
+10 msec
40
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(The letters correspond to those in Figure 5.16). Informal listening tests with the clarinet stimuli
quickly showed that it was impossible to distinguish the three members of a group.

Furthermore, this line of work ran into an unexpected stumbling block with the other in-
struments. Figure 5.16b shows a set of amplitude envelopes for the tongued trumpet transition,
using the same times just given. (For clarity, lines B, D, E, and F are omitted.) Unfortunately,
the envelope of the original attack is shaped such that it “undercuts” the envelopes A through J.
Even worse is the behavior of lines G, H, and J themselves: The amplitude of the original varies
so much that the line egding at H actually has a flatter slope than the line ending at J. This also
happens with K, L, and M. The situation with the violin is even worse. As shown in Figure 5.16c,
some of the lines in the attack of the second note lie on top of each other, due to the vagaries of
the attack.

This line of inquiry was therefore abandoned. The question still remained as to whether
flattening the slope of the tongued transition’s attack would lead to the percept of an untongued

transition. The rest of the discussion of Experiment 6 will focus on answering that question.
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Figure 5.16. Amplitude envelopes for modifying various transitions for Experiment 6. a) clarinet. b)
trumpet. c) violin.
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Figure 5.17. Amplitude envelopes actually used for creating transitions in Experiment 6. a) clarinet.
b) trumpet. c) violin.
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Preparing the Stimuli

The amplitude envelopes shown in Figure 5.17 were applied to the tongued transitions of the three
instruments. The decay at the end of the first note was not varied. The end of the attack of the

second note varied from that of the original by the following amounts:

0 msec (i.e., the original recording unmodified)
. +10 msec

20

40

80

F. 160

BO QW

There were thus seven test stimuli for each of three instruments.

Experimental Procedure

The procedure for this experiment varied significantly from that for the other experiments. There-
fore, the experimental procedure will be covered completely in this section (rather than in Ap-
pendix 3, as for the other experiments).

Seven test subjects participated in this experiment: 1, 2, 4, 5, 8, 9, and 10. This number
of subjects was judged, and proved, to be adequate. The test subjects heard the test tones in
one of the listening stations at CCRMA; all test subjects heard these tones in the same room
(this was not the room used for the other experiments). The test subjects heard this experiment
before taking the other experiments. For a given instrument, I played the seven tones in the series
given above, A through G; the stimuli were played directly from computer disk through the A/D
converter in the Samson box, connected to the speaker in the listening room. The subjects could
hear the series for each instrument as often as they desired. The order of instruments was varied
with each new subject, so six possible orders of three instruments were presented.

The subject was instructed to describe in his own words, after hearing the series, what if
anything changed across the seven stimuli. As he s;;oke, I typed his comments into a file in the
computer. If the subjects noted that the percept changed from tongued to untongued, we could
reasonably expect them to remark on this in their comments. This was, in a word, a “sneaky”

way of discovering the subject’s response without asking leading questions.
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Table 5.13. Order of Presentation of
Instruments in Experiment 6.

Subject First Second Third
1 clarinet trumpet violin
2 clarinet violin trumpet
4 clarinet trumpet violin
5 violin trumpet clarinet
8 trumpet violin clarinet
9 trumpet clarinet violin
10 violin clarinet trumpet

Results

The data consisted of the subjects’ responses, which will be summarized here (and quoted verbatim

where appropriate) not on a subject-by-subject basis but rather grouped according to content.

Order effects: In general, the subjects’ responses depended to a certain extent on the order in
which the instruments were presented; the order of presentation is given in Table 5.13. Except
for subject 4 (more about him below), the subjects seemed to understand most quickly what was
happening to the notes when the clarinet was played first; the effect was also noticeable for the

trumpet, but hearing the violin first seemed to leave subjects uncertain of what they were hearing.

Change from tongued to untongued: A few subjects did suggest a change from tongued to
untongued, but always with reservations and qualifications. Moreover, no one subject heard a
change from tongued to untongued for all of the instruments; so the conclusion that such a change
is generally heard cannot be supported by this data, QED.

Subject 1 remarked about the trumpet:

[on first hearing the trumpet series, after having heard the clarinet]): Again, we have the
same thing. I hear a little tonguing glitch at the begin of the second note—then it drops
amplitude and come back up [across the seven stimuli]. It’s not quite as thorough a job
as on the clarinet of cutting the amplitude of the attack—it misses some microseconds.

[after hearing the trumpet series again]: It might be just a valve being pushed down
[that I hear at the begin of the second note]. It doesn’t really sound like a tongued note,
but there is some noise in there. I don’t think they’re tongued. There is a noise there,

but the second note is probably not tongued.



Time-varying Amplitude Cues 153

On first hearing this series, subject 10 said that he “didn’t hear anything”; after hearing the series
again, he reported: “... the second note is trying to be more legato, as though it doesn’t come as
strongly or as quickly as in the beginning [stimuli]—sort of making [the second note] more legato.
But [the player] didn’t do a very good job of it.”

As for the violin, subject 2 (a string player) reported:

It sounds like there are two different bows in the first [stimuli]. By the end [of the series],
it sounds almost like it’s fingered [...] with two dots and a slur. There is still a little bit
of a gap between the notes. It sounds like it’s one bow rather than two bows.

By “lur and two dots”, I mean that for repeated notes, [you play] both notes [with
the bow moving] in the same direction, but stopping the bow in between subtly. This is
usually used only for the same note on the same string. That kind of bowing is usually
not used for a new pitch.*

The other way to hear that is with a bow change, but the person starts very slowly
on the up bow [for the second note]; as though coming very gently into the up bow. The
first [stimuli] sound like a definite down bow/up bow. At the end of the series, if there
is a bow change, then there’s almost a crescendo on the second note.

In the first [stimuli], it’s more possible for this [to have been played on] separate
strings than in the later [stimuli).

The same thing is happening in the clarinet: The last [stimulus] sounds synthetic

because it’s been changed so much.
Subject 9, also a string player, made similar remarks:

The amplitude, i.e., the bow velocity, is being reduced at the beginning of the second
note. By the last [stimulus], there is an attempt at legato, but we also get a dip in
amplitude. It gives the impression of a legato with an accent on the second note. So the

point of transition between the notes equals the point of lowest bow velocity.

Subject 10 heard similar effects for the violin:

*This notation is discussed, for example, in Burton (1982), pp. 81-82, and Blatter 1980, p. 71. See also the
discussion of “getrennte Noten in einem Bogenstrich” in Humperdinck (1892), p. 26.
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“I could even say that the first [stimulus] seemed like a change of bow, but the later ones
not. So there is some energy that stops in the first [stimuli], but the later ones seem

more connected.”
This same subject was the only one to comment along these lines for the clarinet:

The first [stimulus] is very clear—two separate notes, two breaths. Later, it’s more legato.

It’s untongued in the later [stimuli], at least. The later [stimuli] sound more artificial.

Thus, we see that none of these comments is a ringing indictment for hearing a change from
tongued to untongued across the series of stimuli; and these were all of the comments in which
this possibility is even mentioned.

Indeed, some subjects were confused about what was happening in the stimuli. Subject 4,

mentioned above, heard the clarinet series first, and had this to say:

The decay time is increasing on the first note [incorrect), and the attack time is increasing
on the second note [correct].

The first note became longer than the second note [incorrect]; in the beginning [of
the series], the two notes were equal in duration [correct).

[after hearing the series again] At the end, the duration of the first note is longer

than for the second note. [incorrect]
For the trumpet, this subject first reported:

The attack time on the second note is steadily increased. [correct]
but after he heard the same series again, he felt that

it sounds like no change occurs, except at the end of the series, where the attack time of

the second note becomes shorter. [incorrect]

Similar problems occured with the violin for this subject.

Subject 5, a string player, was likewise confused. In order to avoid belaboring the point, I
will mention simply that in the violin, he did not “hear much changing; all sound pretty realistic;
all sound very much alike;” and he felt that in the trumpet series, “it seems as though the two

notes are getting closer together.”
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Subject 8 felt that the clarinet series went “in the opposite direction as in the trumpet.” In
fact, for the trumpet he said that the two notes “become more separated, less legato,” contradicting

the notion that the tongued transition might become untongued.

Naturalness: Another theme running through the comments dealt with the artificial impression
evoked by the stimuli at the end of each series. Subject 10, for example, said that in the violin
“there is something wrong with the last one”. Subject 9 felt that the trumpet “gets electronic at
the end ... it’s been smoothed in some way that’s not natural.” With the clarinet, listen 2 said
that “... by the last [stimulus], it sounds synthetic.”

The overall impression created by these series of stimuli is best summarized by subject 2, who

remarked, speaking of the trumpet:

None of these sounds like a legato. The same is true in the clarinet and the violin [which
he had heard earlier]. It sounds like it’s trying to get to a legato, but it gets synthetic
instead of getting to a true legato.

Conclusions

It is possible to change the slopes of the amplitude envelopes surrounding a transition over a fairly
wide range. Steep slopes, even steeper than those found in nature, do not seem to be troublesome.
As for flatter slopes (extrapolating from the comments of the subjects), an attack time in the
range of 10 to 100 msec or so seems to be acceptable; longer attack times (and by inference, longer
decay times) seem artificial, and can even confuse the subject’s impression of the articulation.
Most importantly, the slope is not a clear-cut cue for the kind of articulation used. This topic will

be dealt with further in Chapter 6.



156 Chapter 5

Experiment 7: Swapping Amplitude Envelopes

Background

This experiment is designed to shed further light on the relative importance of spectral vs. am-
plitude cues in allowing the subject to identify playing styles. It also examines the role of specific
amplitude envelopes; that is, if the amplitude envelopes for tongued and untongued notes are
swapped, does the percept swap as well?

As mentioned in the introduction to this chapter, it would be useful to be able to isolate spe-
cific physical cues, and to vary them independently. It seems reasonable to assume that musically
trained subjects can reliably distinguish between tongued and untongued transitions (this experi-
ment, along with Experiment 8, addresses that question). If the cues for those specific transitions
can be isolated, perhaps they can be varied and analyzed experimentally. Of the four parameters
of a transition listed in Chapter 2, pitch (Experiments 1 and 2) and timing (pp. 116-124) have
been discussed.

Isolating spectral cues proved to be impossible. Careful examination of a number of transitions
(such as in Figures 2.3-2.8) showed that it was often easy to identify a set of a dozen or so periods at
the beginning of the second notes, which seemed to include major spectral cues for the transition.
On the string instruments, for the transition with no bow change, there was a distinct “thwack”
as the left-hand finger hit the string to shorten it; and one can see in the plots where this happens.
Or, for the bow change, the waveform turned “noisy” for a little while. Indeed, if these few
periods are spliced out, then the transition really sounds quite different, even though the changes
in amplitude and timing are imperceptible.

However, it proved impossible to work with these short signals. Merely swapping a few periods
between the two transitions produced unusable results. When the “thwack” of the no-bow-change
transition replaced the “bow change” cues, the “thwack” was artificially amplified. Also, it proved
impossible to create the necessary faultless seam when working on this small time scale. Merely
splicing a few periods from one recording into another of course produced pops at either end of the
splice. Cross-fading from the one signal to the other and back again was unsuccessful with cross-
fade times on the order of a few milliseconds, because the abrupt change in phase was audible,
again at both ends of the splice. Use of longer cross-fade times obliterated the very spectral signals
which were being spliced in. These problems occurred for all of the instruments being examined.

The only avenue left was to isolate the amplitude envelopes, while keeping pitch change,

timing, and spectral cues unchanged.
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Preparing the Stimuli

Recall from Chapter 2 that the recordings were not equalized for duration, loudness, and the like.
For this experiment, it was necessary to align the points of pitch change. Figure 5.18 shows the
alignment of the original recordings. One of the two recordings from each instrument was shifted
to produce the control recordings shown in Figure 5.19; the point of pitch change matched on
both the untongued and tongued cases. Two control recordings (called T and U in the following
discussion) for each instrument resulted in a total of six control recordings.

Two test stimuli, called TU and UT, were also created for each instrument. For the UT
stimuli, the amplitude envelope of the untongued transition was modified between points A and
B in Figure 5.19 to match the amplitude envelope of the tongued transition. The stimulus TU
was created by scaling the tongued envelope to match the untongued envelope. (Methods for
amplitude scaling are discussed in Appendix 1). The beginning and ending of the scaling were of

course imperceptible. This resulted in a set of six test stimuli.

Experimental Procedure

As training tones, each of the control and test stimuli was presented once in a randomized order.
For the actual experiment, each of the control and test stimuli was presented three times. (Details
on presentation of the stimuli are given in Appendix 3). The subject was asked to rate each
stimulus as “tongued” or “untongued.”

For the most part, the TU stimuli for all three instruments sounded unnatural, since the
major change was the amplification of the tonguing noise (or the bow change noise). In their
written comments, some of the subjects commented on the poor quality of these transitions. For

example, subject 5 wrote:

This [experiment] includes examples of unrealistic “overtonguing” for which no response
category was provided. Unfair! These notes are not “tongued,” but neither are they

“untongued.”
Likewise, subject 7 felt that

The “bloopy” clarinets sounded neither tongued nor untongued.
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Figure 5.18. Amplitude envelopes of stimuli for Experiment 7. a) Original clarinet tongued and
untongued recordings. b) Original trumpet tongued and untongued recordings. c) Original violin
recordings. with and without bow change.

These sorts of remarks were expected. In fact, in designing this experiment, I considered omitting
the TU stimuli altogether. Still, it seemed best to let the subjects make their own judgments

about whether the transition was tongued or not.

Results

Table 5.14 lists the “raw data®: of the possible three responses for each stimulus and instrument,
how often each subject identified the stimulus as “tongued”.

The first question to be answered was whether the subjects could correctly identify the orig-
inals as “tongued” and “untongued.” The data show that this was not always the case. For the
clarinet, only subject 7 performed exactly as one would hope. The answers for subjects 3, 5, 6,
and 10 also seem more or less reasonable. Subjects 1, 4, and 9 were clearly confused by what they
heard. The situation is not so bad with the trumpet, except for subjects 1, 3, 5, and 6. Except
for subject 9 (himself a string player), the answers for the violin follow the desired pattern. In
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Figure 5.19. Amplitude envelopes of stimuli for Experiment 7. a) The clarinet recordings of Fig-
ure 5.18a, with the untongued stimulus shifted by 812 samples (= 32 msec). b) The trumpet record-
ings of Figure 5.18b, with the tongued stimulus shifted by 1382 samples (=54 msec). c) The violin
recordings of Figure 5.18¢c; the no-bow-change case has been shifted by 5365 samples (=210 msec).

experiments of this kind, it would thus appear that the subjects need to be more carefully trained.

Indeed, subject 4 wrote in his comments:

Because I don’t play wind instruments I am unaware of more subtle techniques of pro-
ducing untongued/tongued attacks. I think you might derive better results if you gave
the answers to the “training tone® examples. This would help as a point of reference
(particularly for people, like me, who lack trumpet, clarinet, and violin playing experi-

ence).

Still, the data from this experiment produced useable results, as the following discussion will show.

For numerical analysis of data, the value of “0° was assigned to each “untongued” response,
with “1” meaning “tongued.” The means and standard deviations of the subjects’ responses are
given in Table 5.15. This same data is shown as a bar graph in Figure 5.20. The mean values for
the T and U stimuli fall into the pattern one would hope for, in spite of the problems mentioned

in discussing the raw data.
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Table 5.14. Number of “Tongued” Responses (Experiment 7)

Subject Number

Stimulus 1 2 3 45 6 7 8 9 10 Row total
Clarinet
T 112 2 2 3 311 2 18 (30)
U 3012110010 9 (30)
uT 0 01003 3 00 O 7 (30)
TU 3 3 3 23 3 2 3 3 3 28 (29)
Trumpet
T 1 333 3 3 3 3 3 3 28 (30)
) 3 03 0230010 12 (30)
uT 0 3 2 2033211 17 (30)
TU 33 3 33 313 3 3 28 (30)
Violin
T 3 3 33 3 33123 1 27 (30)
U 0 01000012 0 4 (30)
uT 21212113 3 3 19 (30)
TU 3 33133 333 3 28 (30)

Note: Highest possible score for each subject and stimulus is 3. Numbers
in parentheses show total number of responses collected.

*Only 2 responses collected

Table 5.15. Analysis of Experiment 7.

Clarinet Trumpet Violin
Stimulus Mean s.d. Mean s.d. Mean sd.
T 0.60 0.49 0.93 0.25 0.90 0.30
u 0.30 0.46 0.40 0.49 0.13 0.34
uT 0.23 0.42 0.57 0.50 0.63 0.48
TU 0.97 0.18 0.93 0.25 0.93 0.25

Note: A mean value of 1.0 shows that the subjects responded “tongued”
for all presentations of the stimulus; a mean of 0.0 shows that all subjects
responded with “untongued.”

As for the others, all three TU stimuli were labelled as, tongued, as expected. I believe that
this happened because, as stated above, the tonguing noise was amplified in all three instruments.
For the UT stimuli, the trumpet and violin showed a shift “toward” tongued, as expected. The

- clarinet, on the other hand, was rated even less tongued than the original untongued stimulus.
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Clarinet Trumpet Violin
Tongued .
Untongued T UU 7T TOU T TUU T
T U T U T U

Figure 5.20. Bar graph representation of the data in Table 5.15.

Table 5.16. Analysis of Variance for Experiment 7.

Source S df MS F
Modification (M) 24.88 3 829 5527
Instrument (1) 2.18 2 109 127
Modification x Instrument (M) 3.70 6 062 413
Error (M x | x MI) 5323 348 0.15
Totals 8399 359

The reason for this perplexing behavior of the data was found by listening to the U and UT
stimuli again. In the U clarinet stimulus, there was a noticeable spectral cue which made it easy
to distinguish from the T clarinet, and which I hadn’t noticed as I was making the test stimuli.
It is therefore not surprising that the UT stimulus for the clarinet would remain in the vicinity of
the original U stimulus.

The question remains whether these variations in the mean responses were significant. To
test this, the by now familiar two-way analysis of variance (Hays 1963, p. 402) was applied; the
results are given in Table 5.16. All three F values imply p < 0.1%. Clearly, most of the variance
is due to the modifications made to the envelopes of the original tones. The large F value in
the first line of the table suggests that the change from T to TU, or from U to UT, is indeed
statistically significant. The F value for the “Instrument” term in the table shows that each
instrument reacts to the modifications to a different degree. As for the F value in the third line,
it seems reasonable to conclude that the instruments react to the modifications in a different way;

which is not surprising, especially given the behavior of the clarinet just discussed.
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Table 5.17. Analysis of Experiment 7,
Omitting certain Subjects.

Clarinet Trumpet Violin
Stimulus Mean s.d. Mean s.d. Mean s.d.
T 0.80 0.40 1.00 0.00 0.96 0.20
u 0.20 0.40 0.06 0.23 0.08 0.28
uT 0.47 0.50 0.67 0.47 0.54 0.50
TU 0.93 0.25 0.89 0.31 0.92 0.28

Note: Only the following subjects were included:
Clarinet: 3, 5,6, 7, 10
Trumpet: 2, 4,7.8,9, 10

Violin: 1-8
Tongued Clarinet Trumpet Violin
Unt d
nrongue T UU T T UU T T UU T
T U T U T U

Figure 5.21. Bar graph representation of the data in Table 5.17.

As stated before, some of the subjects were confused by the original T and U stimuli; therefore,
their responses to the TU and UT stimuli might be questionable. Table 5.17 shows the means
and standard deviations for the responses when these subjects are removed; Figure 5.21 shows
the corresponding bar graph. The overall shape of the graphs remains unchanged, except that
the puzgling behavior of the clarinet between the U and UT cases has disappeared. For all three
instruments, the distinction between T and U increases dramatically from Table 5.15 and Figure
5.20, on the one hand, and Table 5.17 and Figure 5.21 on the other. The behavior of the TU case

remains unchanged.
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Conclusion

When the amplitude envelope of an untongued transition is changed to that of a tongued transition,
the percept tends to change as well. The opposite transformation—changing the tongued envelope
to the untongued—produces a transition which can be difficult to classify either as tongued or
untongued. Still, it seems safe to conclude that the shape of the amplitude envelope in the
transition, and the dip in amplitude between notes, influences what is heard by the subject. This
agrees with the conclusion drawn on pp. 121-124. It is thus clear that spectral cues are not the

sole determinant of the kind of articulation perceived by the subject.

Overall Conclusions

In creating a transition, one must pay attention to the shape of the amplitude envelope connecting
the two notes. It is possible to create an acceptable legato transition with a quick cross-fade
between two notes, with no dip in amplitude. Other kinds of transitions require an amplitude dip
of some sort. If, in such cases, a mere overlapped transition is used as a starting point, a wide
range of overlap times is available (20~100 msec or so).

Subjects prefer transitions in which some spectral cues are present. Thus, spectral cues are
at least as important as the amplitude dip in creating the percept of a natural transition. It is
impossible to adjust the amplitude of a transition to completely compensate for missing spectral
cues.

If both spectral and amplitude cues are present, a wide range of acceptable transition times
and amplitude dips is available. In general, a dip of at least 10 dB or so is recommended, relative
to the maxima of the surrounding notes. Raising the transition amplitude above the levels found
in nature is not recommended.

Each instrument seems to react in its own way to changes in the transition.
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CATEGORICAL PERCEPTION

Historical Introduction

The issue of categorical perception lies at the center of a long-standing controversy in psy-
chophysics. (Macmillan, Kaplan, and Creelman [1977] provide a good overview.) One of the
themes running through this research is the question of how many stimuli can be discriminated
from each other, as opposed to how many stimuli can be assigned a specific label. In “contin-
uous” perception, “the process of discrimination is independent of the process of identification”
(Studdert-Kennedy et al., 1970, p. 236). In “categorical” perception, on the other hand, stimuli
can be assigned to only one of the available perceptual categories. It can be shown that speech
sounds, such as pairs of consonants like “t” and “d”, are perceived categorically. This tendency
of the speech system is explained by a “motor theory” of perception, in which the procedure for
forming the sound, itself categorical, molds the manner in which they are perceived. This in turn
has led to the notion of “speech” vs. “nonspeech” modes of perception (Mattingly et al. 1971;
Schouten 1980). Music is an obvious candidate for research into non-speech auditory perception,
and has obligingly served as a testing ground for various experiments on categorical perception.
This historical introduction will trace in particular the development of research on categorical
perception of attack time.

It all started, it seems, with Cutting and Rosner (1974). They used sawtooth waveforms
at frequencies of 294 and 440 Hz from a Moog synthesizer to create test stimuli. In particular,
amplitude envelopes with a rise time of 0, 10, 20, 30, 40, 50, 60, 70, and 80 msec were applied to

the Moog sawtooth waveforms.
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Cutting and Rosner assert: “The rapid-onset stimuli sounded like the plucking of a stringed
instrument, whereas the slower onset stimuli sounded like the playing of the same instrument with
a bow.” This is of course preposterous; but this fallacy in Cutting and Rosner’s assumption seems
to have escaped the other authors who have analyzed Cutting and Rosner’s work.

The subjects were 20 Yale undergraduates not selected according to musical ability. (In a
study involving the categorical perception of the middle note of a chord, Locke and Kellar [1973]
found that musicians were more likely to show categorical perception than nonmusicians. It is
thus perhaps a more rigorous test to use a mixed group.) In an identification test as well as
a discrimination test, Cutting and Rosner found categorical perception of attack time, with the
categorical boundary lying at a rise time of about 40 msec.

In a follow-up study, Cutting, Rosner, and Foard (1976) used sawtooth waves from the same
Moog, this time only at a frequency of 294 Hz. The attack times were the same as before. However,
the decay of each stimulus was clipped off at 250 msec; as they say, “every stimulus had an abrupt
offset® (p. 363). Using these stimuli, they failed to find categorical perception. However, with
longer “offset” times (750 msec), categorical perception did reappear.

Juscsyk et al. (1977) investigated auditory perception in two-month old (!) infants. Attack
times of 1, 30, 60, or 90 msec were applied to a 440 Hz sawtooth waveform from the by-now
familiar Moog; each stimulus lasted about 1 sec. As the tones were played, the sucking rate of
the infant was measured, from which the discriminability of stimulus pairs can be deduced. These
researchers claimed to find categorical perception of rise time in two-month-old infants.

Remez, Cutting, and Studdert-Kennedy (1980) investigated adaption of the categorical bound-
ary, and concluded that both speech and non-speech sounds are processed by the same feature
detectors. Although their work is not germane to this chapter, I must object to their character-
ization of Cutting and Rosner’s tones as “synthetic violin sounds” (p. 524). It is further unfair
for them to characterize their stimuli as forming “a synthetic stimulus continuum of violin sounds
ranging from plucked string to bowed string.” In discussing the “categorical perception of violin
‘articulation’”, they failed to appreciate the distinction between methods of sound production on
the one hand and the percepts invoked on the other, as has so carefully been laid out in Chapter 1.

Rosen and Howell (1981) conducted some insightful experiments which also cast a new light
upon the work of Cutting and Rosner. As in earlier studies, Rosen and Howell formed nine stimuli
by applying envelopes with attack times from 0 to 80 msec in 10-msec steps to a low-passed
312 Hs square wave; the stimuli were generated digitally. They found that discrimination works

best for stimuli with the shortest rise times, and discrimination between adjacent stimuli decreases
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monotonically with increasing rise time. In a word, they failed to find categorical perception with
their tones. Cutting was kind enough to supply the test tapes used in the original Cutting and
Rosner study (1974). Measurements by Rosen and Howell of the rise times of Cutting and Rosner’s
stimuli showed that the stimuli of the latter did not have the desired rise times. Rosen and Howell
decided that the categorical perception found by Cutting and Rosner was due to a nonlinearlity
in the sequence of rise times in the tones used by Cutting and Rosner.

Finally, Kewley-Port and Pisoni (1984) used digitally generated sawtooth stimuli at 300 Hg,
- with rise times of 1, 10, 20, 30, 40, 50, 60, 70, and 80 msec. They trained their subjects to use
the same “plucked” and “bowed” labels as in Cutting and Rosner (1974). Kewley-Port and Pisoni
failed to find categorical perception with their stimuli.

Meanwhile, other aspects of music have been used to test for categorical perception. Locke
and Kellar’s work has already been mentioned. In his classic study on timbre, Grey (1975)
investigated the categorical perception of interpolated timbres. Grey’s original recordings were
equalized for pitch, duration, and loudness. The reference tones in his categorical perception
experiment (clarinet, horn, oboe, and cello) were created from a constant-frequency approximation
(Grey 1975, p. 77) to the time-varying Fourier analysis (heterodyne filter) of the original tones.
Test stimuli were created by interpolating between these reference tones. Grey failed to find

categorical perception for tones interpolated between two instruments.

Experiment 8: Categorical Perception of Transitions

Background

This experiment examines whether transitions between notes are perceived categorically. The
centuries-old tradition of distinguishing various kinds of playing styles, already discussed in Chap-
ter 1, provides a solid framework for picking stimuli which are commonly accepted to be dis-
tinguishable, and which have convenient labels. These kinds of articulation can easily serve as
endpoints between which test stimuli can be interpolated.

Besides, even a two-note melodic snippet matches more closely what happens in connected
speech than does the attack of an isolated note. Furthermore, I believe that perceptual studies
run the risk of reductionism if they limit themselves to studies with artificial tones (more on this

can be found in [Strawn 1982]).
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It is still important to remember, as discussed in Chapter 1, that a given percept can be
evoked by a number of different playing styles. This lack of a simple correspondence will be
made clear in the remarks of the subjects quoted below. For the purposes of this experiment,
however, it is reasonable to assume that the tongued and untongued playing styles result in readily
distinguishable percepts. The results of Experiment 7 showed that, with certain exceptions, the

subjects could readily distinguish the two.

Creating the Stimuli

As in Experiment 7, the tongued and untongued recordings for each instrument were aligned
so that the transition occured at the same time in both recordings (see Figure 5.19). For each
instrument, new amplitude envelopes were created by interpolating between the tongued and
untongued amplitude envelopes, using seven equal linear steps.

These steps were calculated by interpolating “vertically” between the original tongued and
untongued envelopes for the clarinet. Figure 6.1 shows the resulting set of amplitude envelopes.
The untongued original is the top trace, and the tongued envelope is at the bottom of the set of
traces. The vagaries in the interpolated envelopes can be seen more easily in Figure 6.2, which
shows the envelopes on a dB scale. The “waves” in the interpolated envelopes derive from local
peculiarities in the original envelopes, such as shown at points C and D in the figure. I considered
attempting to interpolate along some other line; one possibility might be to construct a series of
time-varying normals to each original curve, and to try to interpolate along some sort of averaged
normals. The ensuing headache was sufficient warning against such an undertaking.

For each instrument, the amplitude of the untongued original was scaled by the middle seven
envelopes to form seven stimuli with interpolated amplitude envelopes. The two original recordings
completed the set, for a total of nine stimuli for each instrument.

For the clarinet shown in these figures, the attack of the first note and the decay of the
second note matched quite nicely in both recordings. In fact, inspection showed that the principal
differences in the transitions occurred between points A and B in the figures. This is easier to see
in the detail of the transition only (Figure 6.2). In fact, for this instrument it proved reasonable to
change the beginning time for scaling, depending on where the interpolated envelope approached
or touched the original untongued envelope; two possibilites are shown in Figure 6.3a and 6.3¢. In
short, the untongued clarinet recording was modified by one of the interpolated waveforms, with
scaling starting between ¢ = 0.8495 sec and ¢ = 0.8780, and ending at ¢t = 1.1165.
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Figure 6.1. Clarinet tongued and untongued envelopes, with seven amplitude envelopes interpolated
between them.

Figures 6.4 and 6.5 show the corresponding sets of envelopes for the trumpet and violin,
respectively. In general, the stimuli for these two instruments were created in exactly the same
manner as for the clarinet, with scaling limited to the region between points A and B shown in
each figure. It was necessary to scale the amplitude of the decay of the second tongued trumpet
note to make it match the decay of the untongued note. As shown in Figure 5.19b, those two
decays were quite dissimilar, and the difference was definitely audible.

The attack and decay times for the trumpet transition varied over a range of about 50 msec.

In the violin and trumpet, the decay of the first note varied over a range of about 300 msec, but
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Figure 6.2. Detail of Figure 6.1, showing the boundary and interpolated amplitude envelopes at the
transition. Here the y-axis is in decibels.

the variation of the attack times of the second note is difficult to describe, as the attacks of the
tongued and untongued cases varied more in their form than in their rise time. Recall from the
discussions in Chapter 5 that the shape of the attack of the first note can play a role in determining
the percept. Thus, it is difficult to isolate the attack time of a second note and vary only it to
conduct studies on the categorical perception of performed transitions. This is another instance
in which studies of isolated notes can prove to be reductionistic.

The second stimulus (counting from the bottom of Figures 6.2, 6.4, g.nd 6.5) had an amplitude

envelope very close to that of the tongued transition, the first stimulus. If categorical perception
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Figure 6.3. The individual amplitude envelopes of Figures 6.1 and 6.2. Each plot shows one of the
seven interpolated amplitude envelopes along with the boundary (original tongued and untongued)
envelopes. The y-axis is again linear.

occurs based on amplitude envelope alone, a categorical boundary should be found somewhere

between stimuli 2 and 9 (the untongued original). If categorical perception based on spectral cues

takes place, then the categorical boundary should fall exactly between stimuli 1 (derived from the

original untongued recording) and 2 (the original tongued recording).
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Figure 6.4. Boundary and interpolated amplitude envelopes, just at the transition, for the trumpet
tones in Experiment 8.

Experimental Procedure

As in Experiment 7, the subjects were asked to judge each of the stimuli as “tongued” (“with bow
change”) or “untongued” (“no bow change”). Each stimulus was presented three times. (Details

of the presentation of stimuli are given in Appendix 3).
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Figure 6.5. Boundary and interpolated amplitude envelopes, just at the transition, for the violin tones
in Experiment 8.

Results

Table 6.1 shows how many times each subject labelled each stimulus as “tongued.” For further
numerical analysis, a response of “untongued” was assigned a value of 0.0, with “tongued” set to
1.0. The mean responses across all subjects are given in Table 6.2.

No clear pattern of categorical perception can be seen from these responses. There seems to be
a jump in the mean scores for the clarinet between stimuli 1 and 2, indicating categorical perception

based on spectral cues; however, the behavior of the means for the other two instruments is not
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Table 6.1. Number of “Tongued” Responses (Experiment 8)
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Note: Highest possible score for each subject and stimulus is 3.

*Only two responses collected

tAcross all subjects (maximum = 30)
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Table 6.2. Analysis of Experiment 8.

Clarinet Trumpet Violin
Stimulus Mean s.d. Mean sd. Mean s.d.
1(T) 0.80 0.40 0.97 0.18 0.93 0.25
2 0.27 0.44 0.70 0.46 0.67 0.47
3 0.27 0.44 0.70 0.46 0.50 0.50
4 0.20 0.40 0.67 0.47 0.48 0.50
5 0.17 0.38 0.70 0.46 0.30 0.46
6 0.30 0.46 0.77 0.42 0.20 0.40
7 0.37 0.48 0.67 0.47 0.17 0.37
8 0.23 0.42 0.73 0.44 0.17 0.37
9 (L) 0.23 0.42 0.66 0.46 0.27 0.44

Note: a mean value of 1.0 shows that the subjects responded “tongued”
for all presentations of the stimulus; a mean of 0.0 shows that all subjects
responded with “untongued.”

so clear-cut. The totals column in Table 6.1 also fails to show any clear-cut patterns. Indeed,
the total number of “tongued” responses does not monotonically decrease for any of the three
instruments from stimuli 1 through 9. In the same table, subject 7 clearly shows categorical
perception for the clarinet and violin; but not for the trumpet.

As in Experiment 7, some subjects were confused even by the original recordings. Subject §
could not distinguish the tongued and untongued clarinets; the trumpet confused subjects 1, 3,4,
5, 6, 7, and 9; and subjects 1 and 4 were also confused by the violin. Removing the responses of
these subjects does not produce a set of data with any clearer results than those already presented.

Again, the written comments of the subjects provide some insight into their responses. For
example, subjects 2 and 4 felt that the test tones were presented too quickly.

Another theme running through their comments is the difficulty of making this kind of judge-
ment at all. Subject 7 wrote:

I don’t feel confident in my ability to tell apart a real violin bow change vs. non-
bow-change if the player is very good. Similary, I don’t think I could tell apart a “slightly
tongued” real trumpet or clarinet from an untongued real trumpet or clarinet. So this

made the synthetic ones even harder.

Be that as it may, this was the one subject who consistently picked tongued or untongued for
two of the three instruments (see Table 6.1). Along the same lines, subject 9 remarked that
“some weren’t tongued or untongued, ...”, and from subject 10 we have: “Many were not clear;

=> random choice.”
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What I find so perplexing, in comparing Table 6.1 with Table 5.14, is the fact that some
subjects performed differently in Experiments 7 and 8 when they were judging the same original
recordings. A given subject performed perfectly in one experiment, but consistently mislabelled
the same recordings in the other experiment. For the most part, the responses to the original
stimuli in Experiment 7 were more reliable. This is especially the case for the trumpet; none of
the means in Table 6.2 is as close to “untongued” as one would have experimented. Perhaps the
effects of aural fatigue are visible in the data for Experiment 8, since it was played first on all
three tapes.

Be that as it may, if categorical perception of the transitions of real musical instruments is
to be perceived by anyone, it should be perceived by highly-trained musicians. Furthermore, if
categorical perception occurs in 2-month-old infants, it should also occur in musically experienced

adults without the need for carefully training the test subjects.

Conclusions

Categorical perception cannot be conclusively demonstrated for amplitude envelopes interpolated
between recordings of tongued and untongued transitions performed on musical instruments. (of
course, the possibility remains that categorical perception might occur if the amplitude envelopes
were more strikingly different.)

Incidentally, this conclusion strengthens the assertion made in Chapter 5, that changes in
the amplitude envelope alone cannot compensate for missing or modified spectral cues in the

transition.
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THE LAST CHAPTER

Summary

A few hundred transitions on nine non-percussive orchestral instruments were digitally recorded
and analyzed. It became clear that a performer could repeat a performance with a high degree
of precision; so the set of recordings was judged to be representative. This document contains

amplitude, power, and spectral plots of many of these transitions.

What is a Transition? (III)

The work in Chapters 2-6, based on modifications of those recordings, requires only one small
change to the definition of transition given in Chapter 1, which read, “A transition includes the
ending part of the decay of one note, the beginning and possibly all of the attack of the next
note, and whatever (if anything) connects the two notes.” The “(if anything)” should be struck; if
there is truly a transition between notes (as opposed to what happens when notes are purposefully

detached), then something does exist in the transition, even for tongued transitions.

Amplitude

This definition begs the question of determining where the decay of one note begins and where
the attack of another ends. Observation of the recorded transitions showed that the decay and

attack surrounding a transition can have highly irregular shapes.
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The amplitude in a transition drops 10 to 40 dB from the maxima of the surrounding notes.
A consistent pattern was found in which the amplitude dip for tongued notes was greater than
that for untongued. But the amplitude never drops to the background noise, even for tongued
notes; such a low amplitude value might well be reached for notes purposefully detached.

The dip in amplitude found in nature should be included, and should not be raised. Raising
the amplitude floor of the dip in performed transitions has the effect of artificially amplifying
any noise which may be in the transition. The amplitude may be lowered without causing such
problems, although the perceived articulation may be changed as a result.

The amplitudes of the notes surrounding the transition can often be quite different. This
does not seem to have an effect on the area immediately surrounding the point of pitch change.
Obviously, more potent articulations must be molded to mesh with their surroundings.

It became clear that the decay of a note may have a greater role than previously assumed,
once the note is placed into a musical context. If, as I discussed in (Strawn 1982), timbre is
broken down into two broad categories of instrument identification and quality judgment, then
the results here do not contradict what is commonly assumed about the role of the decay in
identifying an instrument. However, the shape and duration of the decay can have a significant

role in determining the perceived articulation.

Time

On the other hand, there are bounds on the shape and duration of the “flanks® surrounding a
transition. A decay that is too long sounds like a purposeful dimenuendo; an attack that is too
long sounds like a “swell” on a note. In other words, flattening the slope of the “fanks” will not
change a tongued percept into untongued.

The gap time between tongued notes is longer than for untongued transitions.

The point of pitch change occurs right at the beginning of the attack of the second note.

Pitch

The shape of the frequency glide between the two notes does not seem to be critical, unless it lasts
too long; in such a case, a “glissando” or “sliding” effect can be heard. In the recorded transitions,

the change in pitch occurs quite quickly, sometimes within a few periods.
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Waveshape

Only in transitions where the attack of the second note shows significant noise can a discontinuity
be said to occur; for legato transitions, no discontinuity at the point of pitch change or anywhere

else in the transition was found.

Spectrum

There are characteristic spectral changes associated with a transition. As the amplitude drops at
the end of the first note, the spectrum rolls off; and the spectrum builds up again as the second
note enters. An adequate tramsition can be created without such spectral cues; but transitions
containing them were preferred by listeners.

The spectrum of the transition region can be modelled as a low-passed version of the end of
the first note, at least until the point of pitch change. Often, only the first 10 or 20 harmonics of
the first note are left in the transition. The lower-frequency components in the transition region
are not strong enough to mask the weaker higher-frequency components. More work should be
done to determine how many of those higher-frequency components need to be retained to create
a convincing articulation.

The attack of the second note may include instrument-specific features (such as the “blips®
of the brass), which, at least in monophonic passages, should be retained. The amplitude char-
acteristics of the transition cannot be modified to compensate for missing or modified spectral
changes.

As with the amplitude dip, there is a difference in the spectral evolution between tongued and
untongued transitions. A more detached articulation produces a deeper notch in the spectrum,
and the notch itself lasts longer. There are certainly spectral cues peculiar to given playing styles;

but these have been noted here only in passing.

Articulation

Such spectral cues are not the only determinant of the perceived articulation; amplitude cues play
a very important role too. Changing the amplitude envelope of the untongued transition to that
of the tongued transition produced a tongued percept. (The opposite case produced inconclusive
results).

It must be remembered that a given perceived articulation can be achieved with a variety of

playing techniques.
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Modeling Transitions

I have shown that the phase vocoder (the short-time Fourier transform) is adequate, even if a
little clumsy, for emulating a transition. It is able to track frequency adequately around the
point of pitch change, and it is able to model any non-harmonicity in the transition adequately,
even though the phase vocoder was not designed to do so. Line-segment approximations to the
outputs of the phase vocoder adequately capture the characteristics of the transition. Again, any
peculiarities of the attack, such as blips in the trumpet, should be retained. On the other hand,
it seems adequate to connect the frequencies of the two notes with a simple vertical line at the

point of pitch change.

Transitions and Timbre

It was not the goal of this work to use transitions to investigate timbre, even though that will un-
doubtedly become a fertile area of research. Still, some conclusions about the perception of timbre
can be drawn based on the results presented here. The full-data representation of Experiment 1
is equivalent to Grey’s complez synthesis (1975, p. 26). His line-segment approzimation matches
what was created for Experiment 2; and his cut-attack approzimation is equivalent to the test
stimuli of Experiments 4 and 5. In addition, I created, but did not use, transitions between tones
which themselves matched Grey’s constant-frequency approzimation. My results agree completely
with Grey’s conclusions (1975, pp. 40-41). The complete resynthesis as well as the line-segment
approximation adequately capture the timbre of the original transition. Since listeners consistently
preferred the transitions with spectral changes to those without, the cut-attack approximation is
once again seen to be less desirable. Finally, the “electronic” effects produced by the constant-
frequency still occur, at least in the two-note snippéts that I used here. Of course, I have not

investigated that part of timbre perception which involves the identification of instruments.

Patterns in Transitions

The size of the interval performed (within the range examined here: a minor second through a
minor seventh), the direction of the interval, and (except for the strings) the size of the instrument
do not have as large an influence on the shape of the transition as does the intended perceptual
result. On the other hand, my work showed that a given modification to the signal in the transition
can affect each instrument of the orchestra in a different way. This is consistent with the findings

of a number of timbre studies cited in Chapter 1.
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Categorical Perception

Furthermore, it was not possible to demonstrate the categorical perception of articulations. The
foregoing discussion of the importance of the decay in a transition suggests that research on

categorical perception involving only attack times may be oversimplified.

Et Cetera

Finally, along the way we have taken a glance at some interesting issues, such as how to extend
a musical signal in time; how to measure the time-varying power of a signal; how to make line-
segment approximations easily; how to examine and edit time-varying spectra; and how to scale

the amplitude of a signal more or less with impunity.

How to Make a Transition

Chapter 1 introduced the traditional model of individual notes, which breaks them down into
attack, steady-state, and decay regions. The work discussed here does not require any modification
of the essence of that model (no matter how inadequate that model might be). Thus, the shape
and sige of the transition seems to have no direct effect on the steady-state of the note. The
attacks and decays have to be modified appropriately where they join a transition, which is what
one would expect. Thus, the starting-point for making a good transition is still a pair of good
notes.

This work has examined four different ways for joining those two good notes:

1. Cut off the end of the first note and the beginning of the second note. Overlap
the two notes, and create a quick crossfade between them, perhaps on the order of
60 msec or so. Be sure to align the signals to avoid any gross phase perturbations.
This will produce the world’s cleanest legato; but remember that listeners really
preferred transitions with some spectral cues.

2. Starting with the transition of the last paragraph, apply some amplitude dip, say
10 to 40 dB or so, lasting perhaps 10 to 100 msec, depending on the effect desired.
In this case, the overlap time at the point of pitch change is not so crucial, since

its amplitude is now reduced; shorter or longer amplitude times seem to work too.
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However, the point of pitch change should occur right as the amplitude begins to
rise for the second note.

3. The decay of the first good note presumably undergoes a spectral rolloff. Extend
the “low-passed” end of the first note for the appropriate amount of transition time
(again, perhaps 10 to 100 msec, depending on the effect desired). At the point of
pitch change, crossfade from the extended end of the first note into the attack of the
second note. Recall that this was done in Experiment 1, except that the extended
transition was already available. The crossfade can be quick—20 msec should be
adequate.

4. After the notes have been analyzed with the phase vocoder or some other suitable
technique, create a transition by extending, say, the lowest 10 or 20 harmonics of
the first note; their summed amplitude should be 10 to 40 dB down. At the point
of pitch change, splice these harmonics onto the amplitude traces of the attack of
the second note. The frequencies can jump vertically from the first note to the next

note, right at the point of pitch change.

Suggestions for Future Work

The definition of transition given here has been kept purposefully vague. Many of the aspects of
a transition listed at the beginning of Chapter 2 have not yet been explored. Doing so would lead
to a better understanding of what is important in a transition, and what is not. On the other
hand, coming up with a hard-and-fast rule for delineating the bounds of a transition may prove
impossible.

Some more tools need to be developed to facilitate working with musical contexts. It would
be useful to be able to equalize note pairs without distorting the transitions between them. Along
these same lines, a measure of the “similarity” of two amplitude envelopes would be helpful. In the
spectral domain, someone should investigate the differences between the original signal and the
signal resynthesized from phase vocoder analysis. This applies to resynthesis from the full data
as well as to resynthesis from the line-segment approximations. Surely some way can be found to
reduce the number of channels needed for additive synthesis of high-quality musical sounds. Also,
spectral editing could use considerable improvement. There should be a way, for example, to edit
“across” a spectrum easily; I still think that the data structure proposed in (Strawn 1980) would

be a good starting point.
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This study has paved the way for work on the perception of timbre in multi-note monophonic
contexts. This could follow several paths. One might use melodic contexts to throw light on
human auditory processing. After all, an entire musical context makes higher requirements on
human memory and attention than do individual notes. Or, one might use experiments on timbre
perception to sharpen our understanding of what in the physical signal is important for generating
real musical melodies. Another possibility would be to tackle the question of identifying musical
instruments in a melodic context; if you splice, say, an attack from one instrument onto a note
in the middle of a melody played by another instrument, can the difference be heard? Are there
instrument-specific signatures which occur in a transition?

Leaving monophony, it would also be of interest to examine how transitions are affected
by their “vertical” context. For example, what happens to the musical signal when two players

“synchronize” their articulations?
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AMPLITUDE SCALING

For the studies and experiments discussd in Chapters 3, 4, and 5, it was necessary to perform
amplitude scaling, often on a very small scale in time and/or amplitude. For example, in some
preliminary work not discussed in this document, I found it necessary to raise the amplitude of
a few periods by just 6 dB. Figure Al.1a shows a typical if highly simplified amplitude envelope.
The idea is to scale a) by some function c) to make the final amplitude look like b).

At COCRMA; Loren Rush (1982) had developed a method of using raised sinusoids for cross-

fades. The function

__cos(02)+1, 0<fi<~w
is used for fadeout, and the same function in the range 7 < § < 2x is used for fadein. It can
be shown that the sum of the function at § and 6 + 7 equals 1.0, making this function useful
for crossfading. Indeed, I used this facility, for example, in trying to splice spectral cues from
one transition into the attack of a note in another transition, in the preliminary studies discussed
under Experiment 7. However, this technique did not prove to be general enough for the amplitude
scaling which I needed. Obviously, Figure A1l.1c differs from a raised sinusoid.

Simple line segments such as shown in Figure Al.1c also proved inadequate in many cases, as
a click occurred in the scaled waveform, especially z;t points A and D in the figure. It might be
possible to modify the scaling function of ¢) to avoid clicks; but doing so by hand for each new
case would be too clumsy.

I finally adopted cubic splines (which I had earlier rejected for line-segment approximation of
individual amplitude and frequency functions produced by the phase vocoder—see [Strawn 1980],
pp. 5-6). The function of Figure Al.1c is approximated with piecewise cubic splines, which have
the property that at the breakpoints between each spline, the values and the slopes are constant,
which means that a “phase pop” is avoided at each breakpoint. By “phase pop,” I mean a sudden
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Figure A1.1. Typical amplitude scaling. a) Original envelope. b) Target envelope. c) Scaling function
to convert amplitude of a) to that of b).

jump in the amplitude of a waveform, usually from one sample to the next. (Strong and Clark
[1966a, p. 41] also reported problems with this). A phase pop can be caused when a scaling
function suddenly starts, stops, or changes direction; improper amplitude scaling of this kind
causes such pops, which are easily audible and a great source of irritation. Another advantage of
using cubic splines is that scaling can be limited to an arbitrarily small part of the signal, resulting
in a savings in computation time.

One must be careful here, though. If the function of Figure Al.lc is blindly approximated
with cubic splines, the “Micky Mouse ears” of Figure A1.2b are the amusing result. It is therefore
necessary first to interpolate the scaling function of Figure Al.2a as shown in Figure Al.2c;
each dash connects explicit breakpoints. For most of my work, I used a spacing of 50 samples
(=1.95 msec at my working sample rate of 25.6 kHz). When cubic splines are fit to these points,
the resulting scaling function still has small “ears,® but at this resolution in time, their effects are
negligible. It is necessary to include an “extra® point with the value of 1.0, shown at E and H
in Figure Al.2c, along with the true endpoints of the scaling function, shown at F and G in the



Amplitude Scaling 185

1.0 A D a)

1.0

2.0 \ /\/\ P .
N N4

20| EF rFe==a GH
DY A N | B

Figure A1.2. Amplitude scaling with cubic splines. a). The scaling function of Figure A1.1c. repeated
here for clarity. b) Cubic spline interpolation of a). c) The function of a) linearly interpolated to a
much finer resolution.

figure. This constrains both ends of the scaling fanction to a smooth transition to or from 1.0,
again avoiding phase glitches in the output.

One small detail will complete the explanation. Values for the cubic spline do not have to be
calculated at every sample time. I found it adequate to calculate 3 or 4 points for the cubic spline
between two adjacent points in Figure A1.2c; the intervening points in the scaling function can
then be linearly interpolated with impunity.

To give a concrete example, Figure A1.3 shows the amplitude envelope of the ascending M3
from the violin, played with bow change. The end of the decay of the first note has been extended.
(This is another example of the work discussed on pp. 121-124 in Chapter 5). The goal is to
provide a smooth decay at the end of the first note. Figure Al.4a shows the amplitude envelope
of the first note and the transition; the upper line in the decay of the first note is the extended
section. The lower line shows the target amplitude envelope. The scaling function is shown in
the bottom half of the figure. It is this scaling function which is interpolated as shown in Figure
Al.2c.
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Figure A1.3. The end of the first note has been extended (violin ascending M3, with bow change).

By way of footnote: It might be possible to scale the magnitudes of the individual harmonics
to achieve the same effect in a signal resynthesized with additive synthesis. The problem is that
the magnitudes of the harmonics do not monotonically increase or decrease during a transition,
nor do they increase and decrease in synchrony. Furthermore, it remains unclear how one could

control the time-varying amplitude of the resynthesized signal.
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Figure A1.4. a) Amplitude of part of Figure A1.3, showing original and target envelopes. b) Scaling
function (detail) for converting original envelope to target envelope.
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METHODS FOR EXTENDING WAVEFORMS

For the work reported here, as well as for any number of preliminary studies mentioned only
in passing or not at all, it was necessary to extend a recording in time—sometimes by a few
milliseconds, sometimes by a second or so. This appendix discusses three time-domain methods

and two frequency-domain methods which I examined for this purpose.

Method 1: Repeating a Large Section of a Note

This is the simplest of the methods I developed. In Figure A2.1a, we see a schematic representation
of the amplitude envelope of a note. A large section—500 milliseconds or so—of the steady-state
is selected, as shown by B and C in the figure. Part b in the figure shows how this section can
be duplicated and spliced back into the note, using the cross-fade procedure given in Appendix 1.
The splice points E and F must be carefully chosen to produce a seamless splice. At E, some
period peak in the signal from AB must align with some period peak from CD. The same holds
true for point F. If the peaks are not aligned in this manner, a noticeable phase “glitch” is the
usual result. I typically used splice times (AB or CD) on the order of 20 msec.

In order for this to work, the steady-state portion of the note to be extended must live up to
its name: There cannot be a gross drop in amplitude across BC, nor can there be a large change
in frequency. This method worked well for my clarinet recordings, but not so well for the violins
or trumpets. It does have the advantage that the entire duplicated portion automatically has all
of the “lively” quality necessary for creating natural-sounding musical tones, which is a problem

with some of the other techniques discussed in this appendix.
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Figure A2.1. To extend the note shown in a), part of the steady-state (BC) can be duplicated and
spliced back in. as shown in b).

Method 2: Concatenation

This is again a crude and simple method which works only in certain cases. The basic idea is to
splice out one period of a waveform and duplicate it. As certain synthesigzer manufacturers have
discovered, this is not always as simple as it sounds. The so-called steady-state of a note can
be changing so fast that a “phase pop” occurs as one samples from the end of such an excised
“period” back to the beginning. (Methods 3 and 4 discussed below address that problem). At
any rate, once a suitable period is found, it is duplicated some arbitrary number of times; the
extension is spliced back into the original right where the isolated period came from.

It seems natural to excise a period from a signal by looking for zero crossings which delineate
a period. I had good luck with picking off period peaks instead. This is one of the methods I used
for preparing the test tones described on pp. 121-124. Figure A2.2a shows a detail of the tongued
clarinet transition already presented in Figure 2.3. A period suitable for extension is shown at A
in the figure. The lower half of the figure shows the decay of the first note extended by duplicating
that one period.

One disadvantage of this technique (and the technique discussed next) is that the isolated
period may differ slightly in pitch from the periods surrounding it; the jump in pitch at the begin-
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Figure A2.2. The period shown at A can be isolated and duplicated to extended the decay of the note,
taken from a tongued clarinet transition.

ning and ending of the artificially extended signal can be quite noticeable. Changing the length
of the period to be extended by as little as one sample can cause the pitch of the extended section
to move up or down in pitch—too far. This is another artifact of the problem already mentioned;
that is, isolating a truly steady period. This problem also caused difficulties in attempting to
extend the transition between notes. Thus, it was impossible to use a period from E in Figure 5.3,
because the period peaks (or zero crossings) that could be isolated all implied a periodicity which
corresponded to a pitch vastly different from the pitch of the first note. It was necessary to back
up to A-B-C in the figure in order to find a useable “period.”
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Another disadvantage of this technique (and the next one to be discussed) is that if the
extended signal is very long, the ear hears that the extension is “artificial” and “electronic.” For
fairly short extensions, perhaps on the order of a 100 msec or so, I had good luck with multiplying
every sample of the extension by a random number on a sample-by-sample basis, with the random
numbers limited to about —60 dB from the amplitude of the extended signal. These random
variations “fool” the ear into thinking that it is hearing a lively signal. For longer extensions, this

simple solution does not work.

Method 3: Moorer’s Overlap-Add Method

James A. Moorer was kind enough to suggest what I call an overlap-add method. This is not the
same as the “overlap-add method” for resynthesis from the short-time Fourier transform; see (Allen
and Rabiner 1977). The method, which has a vague historical similarity with “pitch-synchronous

reverberation” (Miller 1973, pp. 46 ff), can be summarized as follows:

1. Remove two periods from the steady-state portion of the original recording. The
period boundaries are defined to be the waveform peaks, as discussed earlier.

2. Across the two periods apply a window derived by inverting a cosine waveform scaled
to the bounds [0, +1].

3. Overlap and add the two periods to produce one period which may then be dupli-

cated.

This is the technique, then, used to create the extensions shown in Figures 5.4 from the signal
between points A and C in the original of Figure 5.3.

This method has the advantage that the endpoints of the individual period being extended
match nicely. On the other hand, the problems mentioned under Method 3 still occur here: The
change in pitch between the original and the extension, and the lack of time-varying spectral

changes in the extension, can be quite noticeable.
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Method 4: Fourier Resynthesis

Moorer and I also discussed a method which is presented here briefly for the sake of completeness,
but which I did not implement. To create an isolated period, perform the Fourier analysis of a
properly windowed but still small number of periods. Fourier resynthesis will produce a waveform
in which the endpoints match as needed as long as both the real and imaginary parts of the

analysis are used; in other words, phase information may not be discarded.

Method 5: The Phase Vocoder

The development of the phase vocoder has been highlighted if not accelerated by extensive research
into time-scale modification of musical and speech signals (Portnoff 1978; Holtzman 1980; Dol-
son 1983). Rather than take the time to implement the clever phase-unwrapping which this method
involves, I used a brute-force method—simply scaling the amplitude and frequency functions in
time before resynthesis. This can be accomplished quickly and easily with a few modifications to
the code given in (Gordon and Strawn 1985, pp. 254-57): basically, the quantities ROverQ and
n0Samps in that code must be multiplied by the time scalar. It is possible to start and stop the
time scaling without “phase pops”, since phase is accumulated for each channel independently.
This method has the further advantage that, except for extremely large time scaling factors, the
extended signal sounds quite natural, as all the harmonics are still evolving independently. Ul-
timately, this proved to be the only method that would work for Experiment 3; Figure 4.6 gives
one example of the results of this technique. It is computationally much more expensive than the

other methods given here, but is likely to perform as needed when the other techniques fail.



APPENDIX 3

EXPERIMENTAL PROCEDURE

The Subjects

Ten volunteers took all of the experiments. Although I also took all of the experiments, my results
are not included here; by the time I had worked on creating the test tones for two years, I was
able to identify the process used to create the tones, which of course distorted my responses.

Table A3.1 summarizes the background of subjects, listed in the order in which they took the
experiments. All subjects were males; only one (5) had any hearing problems—a slight tinnitus,
audible only in the quietest of settings. Some were from the CCRMA community; others were
writers and computer programmers. All were musicians with professional training; and all were
familiar with electronic and computer music. In alphabetical order, they were: Jim Aiken, Thom
Blum, Chris Chafe, Doug Fulton, David Jaffe, Kyle Kashima, Douglas Keisler, Brian Schober,
Xavier Serra, and Amnon Wolman. The volunteer participation of these 10 subjects is gratefully
acknowledged.

Recording the Test Tones

As was explained in Chapter 2, the original recordings were transferred to computer disk. All of
the processing necessary to create the test stimuli for the various experiments was conducted in
the digital domain; no analog processing was used.

The control and test tones were reproduced using the D/A converter of the “Samson box” at

CCRMA (Samson 1980, 1985). This analog output was fed to the line input of a Sony F1 digital
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Table A3.1. Background of Test Subjects

Formal Musical Instrumental Previously Taken
Subject Age Training Experience* Psychoacoustic Experiments?
1 26  B.Mus., composition piano (20) no
M.A., composition clarinet (3)
D.M.A.. composition guitar
electric bass
2 33 B.A. music piano (25) no
Ph.D., music, in progress violin (5)
pipe organ (1)
various electronic
keyboards (10)
3 24 B.Mus., voice piano (7) no
guitar (5)
voice (4)
saxophone (2)
4 30 B.A., computer music classical guitar (10) no
two years graduate work electric bass (4)
in composition clarinet (<1)
5 36  some undergraduate bass guitar (10) no
theory and cello (10)
composition piano (5)
electronic synthesizer
6 33 B.Mus. piano (25) no
D.M.A.
7 29 B.A., Music guitar (17) yes
M.A., composition violin (16)
D.M.A., composition cello (2-3)
oboe (3)
8 29 B.Mus. piano (9) no
M.Mus. voice (4)
D.M.A., in progress recorder (4)
guitar (2)
9 32 M.A., composition cello (22) yes
D.M.A., composition contrabass (17)
10 25 M.Mus. guitar (15) no

Ph.D., music, in progress

cello (6)

*The number in parentheses gives the number of years studied and/or performed.
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Table A3.2. Timing of Experiments

Experiment  Silence Between  Silence Between

Number Stimuli Cases
1 0.20 0.50
2 0.20 0.65
3 0.50
4 0.7% 1.50
5 0.25 0.75
7 0.75
8 0.40

Note: All times in sec. In some experiments, a case
consisted of only one stimulus.

Table A3.3. Order of Presentation of Experiments

Order Experiment Duration

On Tape Number (min) Experiment
1 4 5 Amplitude dip without spectral cues
2 5 25 Variations in amplitude dip
3 3 5 Overlapped tones
4 7 35 Swapping amplitude envelopes
5 8 5 Categorical perception
6 1 1 Phase vocoder
7 2 7 Line segment approximations

tape recorder, a process already used for making record masters at CCRMA. The digital tape(s)

recorded in this manner were played to the test subjects using a Sony F1. It was impossible to

digitally transfer the digital samples from computer disk to Sony F1 at CCRMA at the time when

these tapes were made.

Stimulus Timing

The average duration of each two-tone stimulus was 0.75 sec. In a given experiment, each case

was separated from the next by a short amount of silence. When a case consisted of two stimuli,

the stimuli were also separated by silence. The durations of these silences are given in Table A3.2.

Table A3.3 summarizes some other information about the experiments, including the duration

of each. The total duration of the tape was approximately one hour.
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Randomizing the Order of Trials

For each experiment, the trials were presented in a quasi-random order, which can best be ex-
Plained with an example. In Experiment 5, there were 19 cases (see Table 5.5). Some cases
were played three times, some twice. These 19 cases were created for five transitions: two on the
clarinet, two on the violin, one on the trumpet.

For all of the experiments, the test tapes were arranged so that two stimuli from the same
instrument were never played in succession. A further constraint existed for Experiment 5. Each
case consisted of two recordings; each recording was in a file. Each of the 35 files appeared in
more than one case. For example, the original recording for a given instrument appeared in cases
1-12 and 19; the case with 0 dB dip appeared in cases 1, 7, and 13; and so on. Only 31 files could
be queued up for playing at one time on the CCRMA system. Therefore, the 250 trials for this
experiment were broken down into groups of 50; cases were randomly selected within each group
of 50 until the maximum number of files was reached. For the rest of the group of 50 trials, only
cases requiring the currently available set of files could be selected.

At the beginning of each experiment, several “training examples” were presented. These were
scored by the test subject, but were not included in the numerical analyses presented here.

Three different tapes were made. On each tape, the order of trials within a given experiment
was different. Also, a given experiment started with a different instrument on each tape. Subjects
1, 4, and 7 used one tape; subjects 2, 5, and 8 used the second tape; and the other four subjects

used the third tape.

Order of the Experiments on the Tape

Table A3.3 shows the order of presentation of the experiments, which remained fixed for all three
tapes. This order was arbitrarily chosen for its convenience in making the tapes. Perhaps the
order of experiments should have been changed on the tapes; possible fatigue effects were discussed

in the conclusion to Chapter 6.
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Collecting the Responses

Playback Setup

The subjects heard the tapes in the room used for recording the original tones (described in
Chapter 2). They sat at a desk, behind which a loudspeaker was mounted such that it directly
faced the seated subject. Playback level was adjusted to be comfortable, and stayed constant
for all subjects. The digital tape machine was located in a side room, as its motor created a
small amount of noise. The tape machine was thus controlled by the subject using a hand-held

remote-control line-of-sight device.

Directions to Subjects

For each experiment the subjects were told to play the tape from start to finish without stopping.
The digital tape machine used for playback could not be stopped and started at arbitrary places,
as with an analog tape machine; readout of the video tape required a certain startup time. If the
subject stopped the tape in the middle of an experiment, it might be possible to restart the tape
later; but in order for this to work, markings from the “footage counter” on the tape machine
would have to be included in the response sheets, which was deemed too heathen to be acceptable.
Furthermore, it was difficult for the subject to see the “footage” counter on the digital tape machine
used for playback, since it was set so far away. In general, the experiments were short enough so
that the requirement of playing an experiment without stopping posed no problems. One subject
did not follow these directions and as a consequence missed a few trials; this will be discussed
shortly. The one exception to this paradigm was experiment 5, which lasted about 25 minutes. As
was already mentioned, this experiment was broken up into 5 50-trial groups; the subjects were
allowed and encouraged to stop the tape and rest every 50 trials. The subjects were also required
to stop the tape after every experiment, and were allowed to rest between experiments as long as
they liked.

The subjects completed answer sheets printed on normal 8.5 x 11 paper. Each experiment
was introduced with a short written explanation; before I left a subject to his own devices, he read
through each explanation and I answered any questions. The subject re-read the directions before
each experiment ran; this was another reason for stopping the tape between experiments. To
prevent confusion, a voice announced the end of each experiment, giving the experiment’s number

in each case.
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The trials were numbered on the answer sheets, one trial per line, double-spaced. Each
trial was given a number (starting with 1); the name of the instrument playing was included, to
prevent confusion. Each line also included all possible responses (for example, “acceptable” and
“unacceptable”, or “A” and “B” in the preference tests). The subject marked his response with a
pen.

After all of the experiments were run, the answers were entered manually into the computer.
Earlier that year, Mr. Robert Currie of CCRMA had helped me proofread the page proofs for
the volume (Roads and Strawn 1985). Following a suggestion from the publisher, Mr. Currie read
the manuscript aloud while I checked the page proofs for errors. We followed a similar method
for entering the data here—he read the responses, I typed at the terminal. Having proofread
a 700-page book with him, I was convinced of his accuracy. I do not believe that errors were
introduced in this process. Reading in the entire data for all subjects took a few hours. Mr.
Currie’s assistance is gratefully acknowledged.

It might have been possible to collect the responses directly on computer. This method
was used at CCRMA by Gordon (1984), for example. However, there were many factors which
spoke against doing so. The first was the possibility of computer failure with the subject sitting
incommunicado at the other end of the building. (Obviously, there were no telephones in the
room where the subjects heard the tapes). If the computer failed, then the subject would have
to relocate a trial on the tape; but the difficulty in doing so has already been mentioned. Also,
a large amount of software would have to be written for collecting the responses in some useable
fashion. Since some of the subjects were not users of the CCRMA system, such software would
have to be written for the novice. Initial estimates showed that the time involved in collecting the
responses by computer would greatly exceed the time needed for collecting responses on paper;

and this turned out to be the case.

Subjects’ Written Responses

At the end of each experiment, the subjects were encouraged to write their own comments on the
answer sheet. These have been cited, where appropriate, in the discussions of the experiments.
Missing Responses

With seven experiments on the tape, there were 667 “real” responses plus 64 training responses,

for a total (across 10 subjects) of 7310 responses. Of these, 7 were missing: 1 in Experiment 7, 2



Experimental Procedure 199
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Figure A3.1. Arrangement of responses for analysis of variance in Experiment 3. Responses were
missing in the bins marked with “X".

in Experiment 3, and 4 in Experiment 8. All of these missing responses were due to one subject,
who stopped the digital tape in spite of instructions not to do so.

Calculating mean values with a few missing responses presented no problems. The means
given in Chapters 3-6 were calculated by dividing by the reduced number of responses.

The situation was more complicated for analysis of variance. To give one example, Fig-
ure A3.1 shows how the data were arranged for Experiment 3. There were three columns, one for
each instrument; the overlap times formed six rows. Each box in the figure contained 50 entries
(5 trials per subject times 10 subjects). One response was missing for the 80-msec overlap time
for the clarinet, and one for the 40-msec overlap in the violin, as shown by X’s in the figure. To
perform analysis of variance, the missing response had to be replaced with something besides 0.0.

A “dummy” answer was created by the usual method of summing all of the responses in all
of the bins above, below and to the sides of the bin containing the missing entry; the arrows in
the figure show the corresponding set of bins for one of the missing responses. This sum is divided
by the number of entries in the bins in question; the result is then used as a dummy response for

calculating analysis of variance.
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Preface

Analyses of time-varying power and spectrum have been presented in the main part of this docu-
ment for some instruments. In this appendix (and the next), more analyses will be presented to
complete the set.
Table A4.1 gives an overview of what this lexicon contains, and where the plots may be found.
The figures included in this appendix follow the order given in the left-hand column of the table.
I have attempted to select a set of analyses that give a representative sample of what power
and spectral plots look like; reproducing plots for all of the analyses would be prohibitively cum-

bersome. In particular, plots have been selected to allow the reader to selectively examine:

1. both power and spectral analyses for the same interval. This is the reason for listing
the spectral plots of Appendix 5 here in Table A4.1.
2. both ascending and descending intervals
3. a range of different sizes of intervals
4. the contrast between playing styles
5. the effects of instrument size. The reader should compare oboe with bassoon, flute
with piccolo and bass flute, violin with cello.
6. the repeatability of performed transitions. Multiple analyses are presented for the
flute (power and spectrum) and the bassoon (power only).
The interpretation of time-varying power plots is discussed in Chapter 2. All power plots
are shown on a decibel scale spanning 60 dB. Time is in seconds; the duration shown varies from

recording to recording.
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Table A4.1. A Lexicon of Analyzed Transitions.

Instrument Amplitude and Power
Direction Tongued (With Bow Change) Untongued (No Bow Change)
2 3 5 T | 2 3 s 7
Flute t 2.30R 2.31R
!
Piccolo 1 A4l ALl A4.2 A4.2
1 A4l A4l A4.2 A4.2
Bass Flute A43 Ad3 Ad4 Ad4
l A43 A43 AdA Ad4
Clarinet 1 23 23 2.3 24 24 24
29 29 29 210 210 2.10
!
Oboe 1 A4S A4S A45 A45
!
Bassoon Tl A4T A4T A4T A4 T* A48 A48 A4S A48
A4.6R
!
Trumpet T 25 25 25 25 26 26 26 26
211 211 211 211 212 212 212 212
!
Violin t 2.7 27 238 28
213 213 214 214
1 27 27 28 28
213 213 214 214
Cello t| 238 238 239 239
| 238 238 239 239

Note: Each entry is a figure number. The column headings 2, 3, 5, and 7 show the size of the interval
played. T is ascending, and | is descending. R (“repeated”) after the number of a power analysis
figure means that more than one example of the given interval is presented.

*Four examples of the tongued ascending seventh on the bassoon are given in (Strawn 1985b)
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Table A4.1 (continued)
Instrument Spectrum
Direction Tongued (With Bow Change) Untongued (No Bow Change)
2 3 5 7 2 3 5 7
Flute 1 2.32 A5.2 233
2.34 2.35
2.36 2.37

! AS5.1 A53
Piccolo t Ab.4 A55

i
Bass Flute 1

1 A5.6 A57
Clarinet 1 2.18 2.19

i
Oboe T

l Ab.8 A5.10 A59 A5.11
Bassoon 1 A5.12 AS5.19F A5.13  A5.20F

l A5.14 A5.15
Trumpet 1 2.20 221

i A5.16 A5.17
Violin T

! 2.22 2.23
Cello t| ABL.18F

! 2.40 2.4

Note: F after a figure number means that a three-dimensional frequency plot is shown.
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ascending, major third descending, minor seventh ascending, minor seventh descending. The lower
note in all four plots is A220.
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Preface

Appendix 4 gives an introduction to the nature and purpose of this appendix; the remarks there
apply here as well.

Three-dimensional analyses of time-varying spectra are discussed in Chapter 2. The amplitude
scale covers a range of 60 dB for the harmonics in each plot. All of the spectral plots cover a time
range of 300 msec. The number of harmonics varies from note to note; the cutoff point was the
harmonic whose maximum amplitude in the steady-state never exceeded —60 dB. The number of
harmonics was rounded off to a happy medium for all of the recordings of an instrument playing
the same interval. The caption for each figure lists the number of harmonics.

Three plots of frequency traces during the transition are included at the end of the appendix.
(Some problems with analyzing such plots were already discussed in Chapter 2.) In general, the
frequency trace at the end of the first note anticipates the jump in frequency well before the pitch
shifts. The amount of anticipation is puzzling, as the analysis window was only about 20 msec
long. In some of the cases, the trace for the second harmonic gives a better idea of what the

frequency is doing than the trace for the fundamental.
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Figure A5.1. Time-varying spectral analysis of a tongued descending major third played on the flute.
The lower note is A220; 25 harmonics are shown.
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Figure A5.2. Time-varying spectral analysis of a tongued ascending minor seventh played on the flute.
The lower note is A220; 25 harmonics are shown.
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Figure A5.3. Time-varying spectral analysis of a tongued descending minor seventh played on the

flute. The lower note is A220; 25 harmonics are shown.



218 Appendix 5

&

lllllll'llll

.
|

&

|1ll1lllllllllIllllllllllllll

1 1.18 1.20

Figure A5.4. Time-varying spectral analysis of a tongued ascending major third played on the piccolo.
The lower note is A1760; 7 harmonics are shown.
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Figure A5.5. Time-varying spectral analysis of an untongued ascending major third played on the
piccolo. The lower note is A1760; 7 harmonics are shown.
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Figure A5.6. Time-varying spectral analysis of a tongued descending major third played on the bass

flute. The lower note is A220; 40 harmonics are shown.
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Figure A5.7. Time-varying spectral analysis of an untongued descending major third played on the
bass flute. The lower note is A220; 40 harmonics are shown.
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Figure A5.8. Time-varying spectral analysis of a tongued descending major third played on the oboe.
The lower note is A440; 26 harmonics are shown.
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oboe. The lower note is A440; 26 harmonics are shown.
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Figure A5.10. Time-varying spectral analysis of a tongued descending minor seventh played on the
oboe. The lower note is A440; 26 harmonics are shown.
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Figure A5.11. Time-varying spectral analysis of an untongued descending minor seventh played on
the oboe. The lower note is A440; 26 harmonics are shown.
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Figure A5.12. Time-varying spectral analysis of a tongued ascending major second played on the
bassoon. The lower note is A220; 20 harmonics are shown.
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Figure A5.13. Time-varying spectral analysis of an untongued ascending major second played on the

bassoon. The lower note is A; 20 harmonics are shown.



228 Appendix 5

WA A A _
AN~ . A VAN
/)\ AAa
. N
a__ﬂ___ﬁA A
_on W
N [\a N Vs
. JAVAN
R R
.88 .96 1

Figure A5.14. Time-varying spectral analysis of a tongued descending perfect fifth played on the
bassoon. The lower note is A220; 20 harmonics are shown.
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Figure A5.15. Time-varying spectral analysis of an untongued descending. perfect fifth played on the
bassoon. The lower note is A220; 20 harmonics are shown.
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Figure A5.16. Time-varying spectral analysis of a tongued descending minor seventh played on the
trumpet. The lower note is A220; 50 (!) harmonics are shown.



A Lexicon of Analysed Transitions: Spectral Plots

[ B
25
5] P g
DA 'y My,
L4 A et 4 ‘-r‘,\ '\1 vIY
vl " A 58:§E § l\h
Wi v\%b*.
A i1
N1 U 7 Find f VA WALV.V il e v
TN AR
A N
Aleall A N
A A A
A
A 4 0D
- A - A
J A\WY/ANN P\
AL
FAAN
AL
A o
AY A
il P
A Do
Ala\
VA
A
AA . A
L\ PATA AN
A N\
\N A
\—3
N N\_»
A A
A A
IS
1 T LML) L L v ) | ) ) L) 1 ] LI L I 1 § ] l
.98 1 1.18 1.28

231

Figure A5.17. Time-varying spectral analysis of an untongued descending minor seventh played on

the trumpet. The lower note is A220; 50 harmonics art shown.
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Figure A5.18. Time-varying frequencies of the first four harmonics of an ascending major second
played with no bow change on the cello. The lower note is A220.
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Figure A5.19. Time-varying frequencies of the first four harmonics of a tongued ascending major third
played on the bassoon. The lower note is A220.
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5

Figure A5.20. Time-varying frequencies of the first four harmonics of an untongued ascending major
third played on the bassoon. The lower note is A220.
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