
IMPLEMENTING TABLE LOOKUP OSCILLATORS FOR 2716 (A-6)

MUSIC WITH THE MOTOROLA DSP56000 FAMILY

John Strawn

S Systems

San Rafael_ California

Presented at AuDIO

the 85th Convention
1988 November 3-6
Los Angeles ®

Thispreprinthasbeenreproducedfromtheauthor'sadvance
manuscript,withoutediting,correctionsor considerationby
the ReviewBoard.TheAEStakesnoresponsibilityforthe
contents.

Additiona/preprintsmaybe obtainedby sendingrequest
andremittanceto theAudioEngineeringSocie_ 60 East
42ndStreet,New York,New York10165,USA.

Al/rightsreserved.Reproductionof thispreprint,or any
portionthereof,is notpermittedwithoutdirectpermission
fromtheJournalof theAudioEngineeringSociety.

AN AUDIO ENGINEERINGSOCIETY PREPRINT

Implementing Table Lookup Oscillators for Music

with the Motorola DSP$6000 Family

John Strawn 1

S Systems
Post Office Box 623

San Rafael, California 94915-0623, USA

Abstract

The Motorola DSP56000 chip family is starting to appear in a number
of digital musical and audio applications. Various claims have been
made about the number of oscillators that can be implemented on the
chip. Working within a prototypical hardware architecture that will be
briefly discussed, I have implemented some table lookup oscillators in
56000 assembler. The oscillator can be used either as a sine-wave os-

cillator or for playback in a sampling synthesizer. The preprint for this
paper includes code examples. In the preprint and in the oral presenta-
tion, the musical requirements for an oscillator will be presented, espe-
cially concerning updating the frequency and amplitude terms. There
will be a discussion of the numbers of oscillators that can be achieved

under varying conditions, and a discussion of possible software and
hardware design tradeoffs.

Introduction

Chip manufacturers [1, 2] have published application notes concerning the imple-
mentation of oscillators for their DSP chip families. Unfortunately, these articles have
not yet treated musical requirements for oscillators. Several groups are starting to use
the 56000 in music processors (see, for example, [3]). In this paper, we will examine
the requirements for a real-time wavetable lookup oscillator implemented on the
Motorola 56000 chip, a state-of-the-art DSP chip. As one might expect, the chip's ar-
chitecture is being steadily improved by the manufacturer,, the recently announced
floating-point 96000 chip family will not be treated here. Indeed, given that many of
the operations in table lookup (such as address calculation) are of an integer nature,
those planning to implement an oscillator with a more expensive floating-point chip
should study whether the floating-point arithmetic capabilities warrant the increased
cost.

t Current address: Yamaha MusicTechnologiesUSA, Inc. (YMT);Wood Island Building,
Suite 2B; 80 East Sir Francis Drake Boulevard;LarkspurLanding CA 94939; tel. (415)925
0206;uucp: ...ucbvaxlpixar!ymt!john.

-2-

Requirements of a lookup oscillator for music

Waveform generators are used in a variety of audio applications. For music, various
kinds of waveform generators corresponding to the amazing variety of synthesis tech-
niques have been implemented over the years. Here we will limit ourselves to wavet-
able lookup oscillators. Note that a wavetable lookup can be used either for generat-
ing sinusoidal waves, or for a sampling synthesizer.

Following the usual additive synthesis, FM, and sampling models, the generalized
lookup oscillator needs to have the following capabilities:

1. perform, obviously, a table lookup--but not so obviously, possibly interpolate
between adjacent samples. Interpolation can increase the signal/noise ratio of the signal
tremendously [4, 5, 6];

2. update the current position in the wavetable according to a frequency input;

3. modify the frequency input by a frequency modulation (FM) [7] input;

4. multiply the sample from the table by an amplitude envelope value;

5. update that amplitude envelope;

6. write the result to somewhere in memory.

A model oscillator: the Samson Box

The goal of this study, prepared originally for the Center for Computer Research in
Music and Acoustics (CCRMA) at Stanford, was to determine how many Samson-Box
style oscillators [8, 9, 10] could be implemented on one 56000 chip, The
specificationsof the Samson Box oscillator are summarized in Figure 1. This oscillator
is generalized enough that it is useful as a model for a comparison implementation. A
few quirks of the Samson Box oscillator will need to be discussed briefly, since termi-
nology from that oscillator will be used in the code given here. The Samson Box
specification uses the upper-case codes given in the first column of the figure. I adopt-
ed the C-style names given in the third column.

The oscillator performs one lookup, with angle being the current position inside the
wavetable, freq is the radian frequency; freqSweep specifies the frequency envelope,
and is the amount by which to change freq on each sample.

For the amplitude envelope, the exponent is the current stored value, decay is added
to exponent during each sample. We are working with linear envelopes here. The
Samson Box has provisions for exponential envelopes which we will not consider.
The Samson Box has the further provision for asympwte; contrary to what its name
implies, asymptote is added into the updated exponent value, so that asymptote acts as
a kind of positive or negative offset to the envelope.

-3-

For passing data between oscillators, the Samson Box implements "sum memory."
That is, when a quantity is written out to memory, whatever is in memory will be ad-
ded in. A further trick is that the datum to be written out is right-shifted by one bit, as
a precaution against overflow. Sum memory addresses here will be notated in the
comments as mere[x], where x is the sum memory address. (The Samson Box distinc-
tions between last-pass and this-pass memory will not be covered here, although
hardware designers should examine bank switching as one way for updating parame-
ters in parameter memory).

Figure 2 summarizes, from [10], the processing steps inside the Samson Box. These
steps will be used in the 56000 code as comments. For reasons of hardware imple-
mentation which need not concern us here, the Samson Box used quantities with the
bit widths shown in the figures. We will be extravagent here and use 24-bit or 4g-bit
quantities which match or exceed the lengths used in the Samson Box. Where con-
venient, a long quantity (48 bits) will be divided between lower and upper halves such
that the lower half represents a fractional part, and the upper half represents an integer
part.

Hardware considerations

The $6000 chip

The internal architecture of the 56000 family is summarized in Figure 3, taken from
the manual [11].

Internally, there are three 24-bit buses (x, y, and p for "program") which concern the
programmer. These buses connect internal and external memory with the internal ad-
dress and data ALUs. The data ALU and address ALU may be performing calcula-
tions independently and simultaneously while data is being shifted on these three
buses. This parallelism is one of the advantages of this particular chip over certain
other DSP chips on the market, Experience shows that this parallelism can be exploit-
ed in many useful ways by the programmer.

The Address ALU and addressing considerations

Memory is divided (Figure 4) into internal and external portions at address (hex) IFF
in the data memory. (Details of the oscillator parameters will be discussed below).
The internal portion is further divided into on-chip RAM and on-chip ROM areas.
The upper part of the "external portion" is divided off into "peripheral" memory space,
for which there ate certain instructions. Many of the "x peripheral" locations are in
fact on-chip registers used for i/o. There are thus about 64K external X and Y data lo-
cations for parameters and lookup tables.

The memory space can be accessed with absolute addresses, although this is inefficient
on the 56000 chip. The address ALU, shown in Figure 5, is broken into two parts,
each of which contains a) an ALU and b) banks of three parallel registers. Register
Rn for addressing memory is matched with register Nn for offsets and increments

-4-

larger than 1, and with register Mn for modulus and bit-reverse (FFT) operations.
Both halves of the address ALU may be used simultaneously. The corollary is that
there are certain restrictions on which pairs of Rn may be used for x/y memory
accesses during parallel data moves.

The Data ALU

The data ALU is shown in Figure 6. The 48-bit registers x and y are broken into 24-
bit halves (x0 and xl, y0 and yl, respectively). The 56-bit accumulator registers a and
b are broken into 8-bit extension registers (a2 and b2) along with two 24-bit registers
each (al and a0, bi and bO). Any of the registers may be read or written to using el-
ther the x or the y bus. A limiter prevents arithmetic overflow on reads from the a and
b registers. Simultaneously, the "multiply-accumulate and logical unit" in the figure
can perform one integer operation (add, ropy, xor, multiply with round/accumulate, and
the like) during each instruction cycle.

Input/output (i/o) considerations

There are three i/o ports ("host", SCI, and SSI) on the chip, the details of which need
not concern us here, except to say that the SSI serial interface lends itself well to
AES/EBU interfacing, and/or to interconnecting with other 56000 chips. A prototypicai
hardware architecture is shown in Figure 7. A host CPU updates parameters and code
inside the 56000 chip, controls start and stop, and the like. External data and/or pro-
gram memory is dual-ported. In this paradigm, the CPU fills parameter memory with
ail stanup values, then starts the 56000. The CPU passes updates in real time to the
56000, either on an interrupt basis into the 56000's internal memories, or through the
dual-ported external memory. Some handshaking considerations will be covered
below. Audio out comes either from the CPU or from the 56000's (SSI) serial port.

Software for the lookup oscillator

Data structures

A data structure for the parameters

Figure 8 shows one solution for packing the parameters into data memory. Here, we
exploit the 56000's capability for two-word transfers. Where possible, a double-
precision quantity is of course packed into x and y addresses at the same location.
The FM and sum memory address entries are pointers into sum memory, the location
of which will be discussed in the next section. The exact order of the parameters is
optimized to match the code, which will be discussed below. With 7 locations per os-
cillator, a maximum of 36 oscillators could fit into the 256-word internal data RAM.

Memory map for patching and the lookup tables

Figure 4 shows where the oscillator data can fall. Normal external data memory starts
with location 0xlFF, and goes to 0xFFC0 in both X and Y memory spaces. Starting

-5-

with 0xlFF, we stack up parameter frames for as many oscillators as are needed. In Y
memory, there is room for lookup tables. Above the lookup tables are the sum
memory locations. The choice of Y memory for the lookup tables and sum memory
locations is again dictated by convenience of addressing in the code, as will be dis-
cussed below.

Program memory map and control structure

Figure 9 shows three possible paradigms for embedding the oscillator code into an
overall software package. "OVERHEAD" in all three parts of the figure includes the
time alloted for changing the parameters in program memory. There must be a careful
interlock mechanism so that the parameters for at least the oscillator currently being
executed will not be overwritten. The safest method is to allow parameter updates for
all oscillators only when OVERHEAD is executing. This has the disadvantage that
more updates may need to be handled, on the average, than what OVERHEAD allows.

In Figure 9a), the code is compacted into one central loop, which is repeated N times.
This has the advantage that it is easy to change the number of oscillators that are need-
ed, simply by modifying the N quantity in the code in program memory. None of the
parameters is addressed by absolute addresses. During each pass, the addressing regis-
ters are incremented to point to the parameters for the next oscillator. Parameter
blocks for successive oscillators must thus be next to each other in data memory. Part
of OVERHEAD is initializing all of the address registers.

In Figure 9b), the code for the oscillators is repeated N times in program memory. N
oscillators are always performed in each sample time. There is no loop overhead asso-
ciated with each oscillator, as in Figure 9a), so this code is slightly faster but takes up
more program memory space. Parameters fall into contiguous data space, or absolute
addressing may be used.

Figure 9c) is the method that was used in the Lucasfilm ASP (also known as the
SoundDroid) [12, 13]. Here, the code for each block is followed by a jump instruction.
At the end of each sample time, the OVERHEAD block has the option of re-patching
by overwriting, in program memory, the JMP instructions. The final block to be exe-
cuted jumps to OVERHEAD itself. OVERHEAD jumps back "out" to the first oscilla-
tor. This scheme can be implemented with pre-assembled macro calls, which allows
for absolute addresses in data memory, if that is desired. One advantage of this
scheme is that each block can be highly pipelined (an example will be discussed with
Figure 11). In the ASP, each block would implement n copies of one function to ex-
ploit pipelining. The disadvantage of this method is that a memory manager is re-
quired that is intelligent enough to 1) keep track of which functions are in which
blocks in memory; 2) load a new block when the current block is out of functional un-
its; 3) keep track of the jumps; 4) keep track of any absolute data memory addresses in
the (relocatable) program blocks.

-6-

Code for the "complicated" oscillator

The code examples given in this preprint are almost completely stand-alone. They fol-
low standard 56000 formats, except that the code fragments are numbered in the left
margin to make referencing easier in this preprint. Figure 10 gives code for an oscilla-
tor with the full "bells and whistles" described above. The steps given in Figure 2 are
used a comments. There is no attempt at optimizing for execution time; a more com-
pact version of the code will be given later. In fact, in this figure, each line of code
executes only one step. Experience shows that a good way to write tight code is to
first enumerate the steps as is done here.

A walk through the code

Data Structures. Lines 7-10 are labels that correspond to the boundaries in the
memory map (see Figure 4). Lines 12-28 specify one oscillator's worth of the parame-
ters, given in Figure 8. The variable summem in line 14 is a pointer to the sum
memory block which starts in line 36 of the code. sintab in line 17 is the base of the
sine (or lookup) table. The file sintab.asm, not shown here, fills a lookup table starting
in line 32. The SETUP of Figure 9 is limited to the initialization in line 42. The quan-
tity I in yl is used for incrementing the current address to get one of the two lookup
values needed for interpolation.

Parameters. In this 56000 implementation, freq is a 48-bit quantity. The high-order
part (freq hi from x memory in Figure 10) is the right-adjusted "integer" part, up to 16
bits as given by the 16-bit length of the R registers in the 56000's address ALU. The
low-order 24 bits contain the "fractional" part of frequency, freqSweep is also right-
adjusted.

The FM input is scaled to match the frequency input. That is, the FM input is right-
adjusted and scaled such that a modulating sine wave whose maxima reach +(table
length/2) corresponds to a modulator with a deviation of c Hz, where c is the carrier
frequency.

In this 56000 implementation, exponent and decay terms are left-adjusted, signed, 24
bits.

Calculating the interpolated sample. Lines 46-50 calculate the frequency-modulated
frequency increment. The address of the frequency modulation input is read in line 47
into fl, but can't be used (due to 56000 pipelining) until line 49.

By line 56, we have calculated the frequency term in register b as well as stored it in
memory for the next sample. When freqSweep is read in line 53, rO is decremented so
that freq, the old value of which was read with auto-incrementing in the long move of
line 48, can be overwritten in line 55. By (auto-)incrementing and decrementing the
address register in this manner, the code can arbitrarily pick up and deposit parameters
in the parameter frame of lines 12-28. The extra auto-increment in line 56 may seem
extravagent, but experience shows that certain extravagences at an initial coding stage

-7-

can be made to disappear when one starts to compact the code, as will be discussed
below.

Two (usually adjacent) samples from the lookup table are needed to implement inter-
polation. In lines 59-61, we start to set up interpolation. R1 will be used to grab the
first sample, and r2 the second, so we store the lookup table base address into nl and
n2. Register y0 has the table length (minus 1), for calculating modulus by hand. By
the way, there are other possibilities for performing interpolation, such as storing sam-
ples in one bank of memory and a parallel set of differences in another bank. Also, if
we're dealing only with sine waves, there are other methods of generating sines be-
sides table lookup.

Anyway, in lines 64-65 we calculate the new position inside the lookup table. In par-
ticular, we now need to examine what happens when the incremented lookup position
falls off the end of the table in memory. Nominally we would like to store the base
address of the lookup table in register Nn and the length of the table (minus 1) in re-
gister Mn; then Rn would contain the offset. One problem is that there is no easy way
to divide the address register into integer and fractional parts, so that it becomes im-
possible to preserve fractional information for doing interpolation later. The other
sticky part is that the increment can be negative, especially in FM [7], which means
that the lookup pointer can fall backwards off the beginning of the table. The modulus
feature of the on-chip address ALU does not handle this possibility.

Therefore, we have to handle the lookup table boundaries by hand. Note that this code
assumes that exactly one copy of the wavetable is stored in memory. As Bernard
Mont-Reynaud pointed out in a discussion at CCRMA, one could have a partial copy
of the wavetable duplicated before and after a central, complete copy, which might
simplify the code in some architectures. For example, if one calculates the modulus
explicitly for the first of the two interpolated samples, then the second sample could be
guaranteed to always fit into the expanded table. In the code, then, line 68 tests wheth-
er the updated angle is now less than 0. If so, lines 69-70 increment the angle by the
length of the table. Note that the quantity in y0 is the highest-order address in the
table; to get the table length, we need to add in the quantity 1 in register yl, in line
70. Note also there there is a "feature" in line 69---if you've specified a negative in-
crement whose absolute value is larger than the table length, then line 69 won't add in
enough correction. The "and" in line 71 takes care of falling off the end of the table,
and also takes care of a chip "feature"---if, during the additions in lines 65, 69, and/or
70, overflow occurs, then limiting, which we don't want, will happen during the move
in line 72.

When the address for the second sample (for interpolation) is calculated in lines 76-78,
it's not necessary to worry about underflow.

Notethat the updated angle in line 65 is a long quantity stored in accumulator a. The
operations on accumulator a in lines 68-78 affect only a2 and al; the lower-order part
in a0, which will give the "fraction" used in interpolation, remains unchanged. That
fractional part is stored into x0 in line 82, to be used in the macr instruction in line 88.

-8-

Lines 83 and 84 use the base address of the table, stored way back in lines 59 and 60,
to get the two samples for interpolation. Lines 85-86 calculate the difference between
the two samples, which must be in a register such as y0 for multiplication. The first
sample is needed again for line 88. An alternative, when the code is compacted, is to
do a copy or register-to-register transfer from register xl to register b, somewhere in
lines 84-87. The interpolated sample is stored in register xl in line 89 to prepare for
multiplication by the amplitude.

The amplitude envelope. The updated amplitude envelope, calculated in lines 92, 95,
and 97, must be limited to avoid numeric overflow and underflow. Fortunately, the
56000's ALU handles the numeric overflow automatically [11, section 3.3.6]. Of the
several ways to test for underflow, I chose to clear accumulator b in line 96 and then
to test for "less than 0" in line 98. With the tlt instruction, if (in this case) the result
in accumulator a is less than 0, then the quantity in accumulator b is shifted into accu-
mulator a. The clr instruction in line 96 will allow for a double move when the code
is compacted, so this will be an efficient way to get 0 into the accumulator.

When the asymptote term is added in line 104, the result must also be limited for ar-
ithmetic overflow; and the 56000 performs this for free in the move from register a to
register x0 (line 105).

In line 108 we finally multiply the interpolated sample by its envelope. Remember
that in this particular architecture, the oscillator output is first right-shifted, then
summed with whatever is in sum memory. For fun, we can also round up the sample
multiplied by its envelope. An easy way to do the rounding is to add a 1 into the
low-order bit of the enveloped sample, then to right-shift the sum. This happens in
lines 109-110. In lines 112-116, the new sample is summed and written out to sum
memory. Again, the nop of line 113, needed for the address ALU in the 56000 chip,
will disappear when the code is compacted.

Compacting 56000 code

On the 56000, the main vehicle for compacting code is to exploit the parallel move fa-
cility. As discussed above, when the data ALU is performing some operation, the X
and Y data busses (Figure 3) can be moving data between memory and the data ALU
(certain penalties will be discussed at the end of this section). In some cases, data
may be moved between data ALU or address ALU registers as well. Furthermore, the
address registers may be (auto-)incremented. Since all these registers latch their data,
a datum may be fetched and stored long before it is needed, if the fetch can be hidden
in an otherwise unused parallel move slot. The limit on compacting code is ultimately
the number of data ALU operations to be performed. Experience has shown that with
careful hand-coding with real-world audio and musical algorithms, the length of the
code can be brought very close to this limit.

A compacted oscillator

Since the pipelined and compacted code of Figure 11 follows closely the code in Fig-

-9-

ure 10, let us limit this discussion to giving examples of the techniques mentioned in
the last paragraph. The memory maps and data structures remain unchanged, so they
are omitted here.

In lines 59-60 of Figure 10, we grab the base address of the lookup table twice. In
Figure 11, this quantity is first loaded into nl in line 23. Loading into n2 is hidden in
the add instruction in line 32, with a register-to-register transfer inside the address
ALU. As in Figure 10, neither of these registers is used until lines 48 and 49 of Fig-
ure 11.

Stepping backwards and forwards in the parameter frame is more complicated in Fig-
ure 11. The quantity 2 has now been stored in register nO (line 10). In line 23 of Fig-
ure 11, rO is pointing at the base of the table (line 17 in the parameter frame of Figure
10). With the move in line 23, we decrement r0 by the quantity 2 in register nO, so
that r0 now points back at freq (line 15 in the parameter frame of Figure 10). In the
very next instruction (Figure 1 I, line 25), we write out the updated frequency value
and increment r0 by the 2 in nO, so that r0 is again correctly pointing at (table length
-1), which will be read in the next instruction (line 28). By storing 2 in nO, we can el-
iminate the double (iO)+ in lines 55 and 56 of Figure 10. The other subfie difference is
that r0 must be incremented in line 21 of Figure 11, in order for the jump back by 2 to
work, whereas it was decremented in line 53 of Figure 10.

There are many examples in Figure 11 where a single move happens during an ALU
operation. Line 57 shows a double move. This line combines lines 89, 92, and 96 of
Figure 10. Note that register xl in line 89 of that figure has now been replaced by y0
in Figure 11. This kind of switch is frequent when one is compacting code.

A register-to-register data ALU move in line 50 of Figure 11 eliminates the need for
the memory access in line 87 of Figure 10.

In order to tighten the code even further, the instructions of lines 47-49 of Figure 10
are pipelined. Register rl of Figure 10 is replaced by register r6, due to the 56000's
rules governing which address ALU registers can be used simultaneously. The three
instructions are first used at lines 15-17 in Figure 11, before the first pass through the
inner loop. During that first pass, the initialization for the second oscillator is hidden
at the bottom of the figure. Line 15 is hidden in line 76; line 16 in line 79; and line
17 in line 81.

To compress this code even further, the compulsive programmer will look for 1) more
possibilities for pipelining and 2) improvements to be gained by rearranging the
parameter frame, with corresponding changes in the order of the rough blocks of code.

A word of warning about a quirk of the 56000 is appropriate here. Note that there is a
penalty for doing x/y or long moves from external memory when the program is also
in external memory. Of the three memory cycles available (x, y, and/or program), two
may be external "for free." But if all three items come from external memory, then an
additional one-cycle pipelining penalty is imposed.

- 10-

A simple oscillator

Many of the luxuries in the code discussed thus far can be dispensed with for a "bare-
bones" oscillator, such as the one shown in Figure 12. Here we take advantage of the
sine-wave lookup table available starting at y:0 in the 56001 chip (line 8), with length
of 256 parameterizod as #tab_Ich. Sothis oscillator is just a sine oscillator, not a gen-
eralized sampling oscillator. The parameter frame in lines 14-23 show that the time-
varying parts of the frequency and amplitude envelopes have been removcd_ Now there
are freq and amplitude inputs which must be changed elsewhere when it is time for
them to change. The FM input rcmaifis, and it continues to be read on each sample.

In the setup code, tab_Ich is stored into y0 (line 28). In the earlier code, a different
tab_len was read in for each oscillator, but here only one table is used for all oscilla-
tom The base address of that one sine table is stored into nl forever as well (line 29).

We further assume that this oscillator is the only thing being executed in the chip.
Thus, start in line 32 goes to the beginning of the parameter block for every sample.
Note that the code given here is as uncompactcd as the code in Figure 10; presumably
the hop in line 32 in Figure 12 can be removed during compaction.

The blocks of code should now look familiar, but their order has been rearranged.
Lines 56 and 59 are the major difference. Instead of calculating an updated amplitude
envelope, we multiply the sample by the amplitude value in the parameter frame.
Note that no interpolation or roundoff has been done, and the right-shift by 1 is omit-
ted before summing into sum memory.

Conclusion: How many oscillators on one chip?

Suppose that we're operating at a 50 kHz sample rate. The current instruction cycle
time of the chip is 95 nsec, although this time is expected to go down. That means
210 instructions per sample.

The 56000 software simulator reports that the simple oscillator of Figure 12 requires
16 instruction cycles, which would allow for an absolute maximum of 13 oscillators
per chip.

For the compacted oscillator, with internal program memory and external x and y data
memories, the 56000 software simulator reports that one sample takes 37 instruction
cycles, which would allow a maximum of 5 oscillators per chip. As a limiting case, if
we take just the arithmetic operations in the complicated oscillator, there are 21 in-
struction cycles. At 50 kHz, that would result in 9 or possibly 10 oscillators per sam-
ple. (Note that the limit in the chip is thus given by the execution time, at least at this
sample rate, and not by the length of the parameter frame in Figure 8, of which 36
could be fit into internal RAM). Therefore, I would guesstimate that this chip can gen-
erate 8 musical oscillators in real time at 50 kHz; information from others in the music
industry working with this chip shows that this estimate is reasonable.

-ti-

Acknowledgments and Disclaimer

I am grateful to Yamaha Music Technologies for making it possible for me to appear
at this AES Convention. The work in this paper was inspired by a request from Max
Mathews to give a talk on this topic at CCRMA, Stanford University. This work was
completed long before my employment at Yamaha Music Technologies USA and was
supported by none of my consulting clients at that time. This work is entirely my own
and I am solely responsible for errors, omissions, and self-deceptions.

References

[1]. Chrysafis, Andreas. Digital sine-wave synthesis using the DSP56001. Motorola
application note APR1, 1987.

[2]. Precision digital sine-wave generation with the TMS32010. Texas Instruments ap-
plication note SPRA007, 1984.

[3]. Snell, John. "Professional real-time signal processor for synthesis, sampling, mix-
ing, and recording." AES preprint 2508 (M-4), 1987 New York convention.

[4]. Hartmann, W. M. "Digital waveform generation by fractional addressing." Journal
of the Acoustical Society of America 82(6):1883-91, 1987.

[5]. Mehrgardt, S. "Noise spectra of digital sine generators using the table-lookup
method." IEEE Transactions on Acoustics, Speech, and Signal Processing 31:1037-39,
August 1983.

[6]. Moore, F. Richard. "Table Lookup Noise for Sinusoidal Digital Oscillators."
Computer Music Journal 1(2):26-29, 1977. Reprinted in Curtis Roads and John
Strawn, eds. Foundations of Computer Music. Cambridge, Massachusetts: MIT Press,
1985, pp. 326-334.

[7]. Chowning, John M. "The Synthesis of Complex Audio Spectra by Means of Fre-
quency Modulation." Journal of the Audio Engineering Society 21(7):526-34, 1973.
Reprinted in Curtis Roads and John Strawn, eds. Foundations of Computer Music.
Cambridge, Massachusetts: MIT Press, 1985.

[8]. Samson, Peter R. "A General-Purpose Digital Synthesizer." Journal of the Audio
Engineering Society 28(3):106-13, 1980.

[9]. Samson, Peter R. "Architectural issues in the design of the Systems Concepts digi-
tal synthesizer." In John Strawn, ed. Digital Audio Engineering: An Anthology. Los
Altos, CA: Kaufmann, 1985, pp. 61-94;

[10]. "Systems Concepts digital synthesizer programming specification." San Francisco,
CA: Systems Concepts, Inc., version of 9/16/77. Manuscript.

- 12-

[11]. Motorola. DSP56000 Digital Signal Processor User's Manual. Version 1.1,1987.

[12]. Moorer, James A. "The Lucasfilm Digital Audio Facility." In John Strawn, ed.
Digital Audio Engineering: An Anthology. Los Altos, CA: Kaufmann, 1985, pp. 95-135.

[13]. Abbott, Cunis. "System level software for the Lucasfilm ASP System." San
Rafael, CA: Lucasfilm, Technical Memo #58, August 1982.

Figure 1. Samson Box sine-wave oscillator with linear envelope (from
[10]).

name from width name used function
[10] (bits) in this

article

GO 20 freqSweep frequencysweep rate
GJ 28 freq oscillatorfrequency
GK 20 angle oscillator angle
GP 20 decay decayrate
GQ 24 exponent decay exponent
GL 12 asymptote
GSUM adr sum memory output address
GFM FMadr sum memory FM input address

Figure 2. Steps in the Samson Box oscillator. The terminology and
usage of temp variables is taken from [10]. The numbers at the left
refer to the steps in [10], some of which are intentionally omitted
here.

1. Tempo <- 20 bits from mem[FMadr] + high-order 20 bits
of freq

2. freq <- freq + freqSweep, right-adjusted and
sign-extended

4. angle <- angle + Tempo
8. Temp5 <- sin(angle)

10. Temp7 <- high-order 12 bits of exponent
11. decay <- exponent + right-adjusted decay
13. Temp8 <- asymptote + decay
14. Temp9 <- Temp8 * Temp5

sum right-shifted high-order 19 bits into
sum memory

Figure 3. The 56000 architecture (from [11]).

ADDRESS
BUS

16

P ADDR
YADDR

X Memory Y Memory
RAM RAM
256 X24 ADDRESS 256 X24
ROM, ROM
256 X 24 256 X 24

DATA
BUS

24

24 On-Chip

Peripherals DATA ALU
I/O HOST

PORTS ssi
SCi 24 X 24 -> 56

7 PI/O PROGRAM CONTROLLER Muilip_y -
BUS CTRL Accumulalor

CLOCK INTERRUPT

Figure 4. DSP56000 Memory Map (after [11], Fig. 9.1.2)
with parameters for wavetable lookup oscillators.

im

FFFF FFFF FFFF
on-chip external

peripherals peripherals
FFCO FFCO

Sum
Memory

External
Program

Memory Lookup
Tables

Osc n _ Osc n

Osc 3 _ Osc 3

7FF Osc 2 _ Osc 2

Osc 1 _ Osc 1
Internal 1FF 1FF

Program internal internal
Memory XRCM YRCM

FI: FF

internal internal
XRAM YRAM

0 0 0

Figure 5. The 56000 address ALU (from [11]).

GDB

; Arithmeticil I /i ___jRR_'I } I _ I Arithmetic

UnitLow IL :, ' UnitHigh

XAB PAB YAB

Figure 6. The 56000 data ALU (from [11]).

Bit Manipulalion Unit

/ / AES/EBU?

clock _'_ DSP 56000 SSI serial port 141----I_ Other 56000's?

SCI serial portinterrupt--_ 1 host port [-

46 I I _'adr

I "_ I I / contro,

×Oa'aI I_a_a _ro_r_m
Memory I I Memory Memory

T t it data _I t
/ / adr I

parameters -_ Host

other hosts? "_-_ CPU / _ audio out?

Figure 7. Prototypical hardware architecture with
host, 56000, and external memory.

Figure 8. Parameter data structure

Para- x y
meter data data

no. memory memory

1. FMadr empty
2. freqhi freqlo
3. freqSweep hi freqSweep 1o
4. base of table table length
5. anglehi anglelo
6. exponent decay
7. asymptote sum memory address

a) SETUP

REPEAT N

ODE FORONE OSCILLATOR

OVERHEAD

b) SETUP c) SETUP

OSC1 OSC1

OSC 2 E
OSC3 JMP

; r"- osc 2

LOSCN
JMP

OVERHEAD
OSC 3

' E JMP

Figure 9. Embedding the oscillator r-' (3sc N
code in the overall program flow. L JMP

OVERHEAD

E JMP

1 ;; Figure 10. Interpolating "sampler"/sine wave oscillator.
2 ;; DRAFT---uncompacted version

3 ;; John Strawn, S Systems
4 ;; 2/9/88

5 ;; Copyright S Systems
6

7 lookup org set $3000 ; y external

8 summem_org set $2000 ; y external

9 paramorg set $200 ; x and y external

10 progorg set $0 ; p
11

12 ; parameters for one oscillator

13 org x:param_org
14 dc summem+2 ; FM input

15 dc $20 ; freq hi

16 dc 0 ; freqSweephi
17 dc slntab ; base of table

18 dc 0 ; anglehi
19 de 0 ; exponent

20 dc $Tfffff ; asymptote

21 org y:param org

22 dc 0 ; empty
23 dc 0 ; freqlo

24 dc 0 ; freqSweeplo

25 dc tab len-1 ; table length - 1, used as mask
26 dc 0 ; anglelo

27 dc 0 ; decay

28 dc sum_em+l ; sum memory address
29

30 org Y:lookup_org ; lookup table

31 tab_len set 256
32 include 'slntab' ; has label sintab in sintab.asm

33

34 org Y:summem_org ; sum memory locations
35 summem len set 16

36 summem dup summem_len
37 dc 0

38 endm
39

40 org P:prog_org
41 ; setup

42 move #>l,yl ; increment of 1 stays here forever

43 start move #param_org, r0
44 nop
45

46 ; 1. Tempo <- mem[FMadr] + freq
47 move x:(r0)+,rl ; get FMadr

48 move l:(r0)+,x ; get freq

49 move y:(rl),a ; get mem[FMadr]

50 add x,a ; Tempoin a
51

52 ; 2. freq <- freq + freqSweep

53 move 1:(r0)-,b ; get fr%qSweep
54 add x,b ; freq + freqSweep

55 move b,l:(r0)+ ; update freq
56 move (r0)+

57

58 ; set up addressing (need r0 locally for get, update angle below)

59 move x:(r0),nl ; base address into nl

60 move x:(r0),n2 ; base address into n2

61 move y:(r0)+,y0 ; (table length - 1) into y0
62

63 ; 4. angle <- angle + Temp0
64 move l:(r0),x ; get angle

Figure 10 (continued)

65 add x,a ; angle + Temp0in a
66

67 ; create modulus for address

68 jge posFreq ; if angle now < 0,

69 add y0,a ; jump ahead one table's length
70 add yl_a

71 posFreq and y0,a ; y0 has mask for length of lookup table

72 move a,l:(r0)+ ; store updated angle

73 move al,rl ; integer portion of angle to rl
74

75 ; create modulus for address+l (for interpolation)
76 add yl,a

77 and y0,a

78 move al,r2
79

80 ; 8. Temp5 <- sin(angle)

81 ; with interpolation

82 move a0,x0 ; fractional part of address in x0

83 move y:(rl+nl),xl ; get first sample

84 move y:(r2+n2),a ; get second sample
85 sub xl,a ; get sample slope
86 move a,y0

87 move y:(rl+nl),b ; get first sample again
88 macr x0,y0,b ; interpolated Temp5 in b

89 move b,xl ; Temp5 in xl for later multiply
90

91 ; 10. Temp7 <- exponent
92 move x:(r0),a
93

94 ; 11. decay <- exponent + decay

95 move y:(r0),x0 ; get decay
96 clr b ; 0 intob fortlr

97 add x0,a
98 tlt b,a ; a <- a MAX 0

99 ; (overflowhandled automaticallyby chip)
100 move a,y:(r0)+ ; store updated decay, with automatic limiting
101

102 ; 13. Temp8 <- asymptote + decay

103 move x:(r0),x0 ; get asymptote
104 add x0,a ; Tempsin a

105 move a,x0 ; Temps in x0, again with limiting
106 ;

107 ; 14. Temp9 <- Temps * Temps

108 mpy x0,xl,a

109 add yl,a ; round (the 1 from yl will become .5 after shift)

110 asr a ; right-shift by 1 bit with sign extension
111 ; sum into sum memory

112 move y:(r0)+,rl ; get sum memory address
113 nop

114 move y:(rl),xl ; get old value from sum memory
115 add xl,a

116 move a,y: (rl) ; write out to sum memory
117

118 jmp start

1 ;; Figure 11. Interpolating "sampler"/sine wave oscillator.
2 ;; DRAFT---compacted version

3 ;; John Strawn, S Systems
4 ;; 2/10/88

5 ;; Copyright S Systems
6

7 org P':prog_org
8 ; setup

9 move %>l,yl ; increment of 1 stays here forever
10 move #>2,n0 ; for incrementing r0 by 2 sometimes

11 move #param_org, r0
12 nop

13 ; pipelining initialization

14 ; 1. Tempo <- 20 bits from mem[FMadr] + high-order 20 bits of freq

15 move x:(r0)+,r6 ; get FMadr

16 move l:(r0)+,x ; get freq
17 move y:(r6),a ; get mem[FMadr]
18

19 ; main loop starts here

20 ; 2. freq <- freq + freqSweep, right-adjusted and sign-extended

21 start add x,a l:(r0)+,b ; Temp0 in a

22 ; getfreqSweepin b

23 add x,b x:(r0)-n0,nl ; freq + freqSweep
24 ; baseaddressintonl

25 move b,l:(r0)+n0 ; update freq, skip over freqSweep
26

27 ; set up more addressing

28 move y:(r0)+,y0 ; table length into y0
29

30 ; 4. angle <- angle + Temp0
31 move l:(r0),x ; get angle

32 add x,a nl,n2 ; angle + Temp0 in a
33 ; base addressinton2
34

35 ; create modulus for address

36 jge posFreq ; if angle now < 0,

37 add y0,a ; jump ahead one table's length

38 add yl,a

39 posFreq and y0,a ; y0 has mask for length of lookup table
4O

41 ; create modulus for address+l (for interpolation)

42 add yl,a a,l:(r0) ; store updated angle

43 and y0,a x:(r0),rl ; integer portion of angle to rl
44 move al,r2
45

46 ; 8. Temp5 <- sin(angle)
47 ; with interpolation

48 move y:(rl+nl),y0 ; get first sample

49 move y:(r2+n2),a ; get second sample

50 sub y0,a y0,b ; get sample slope in a

51 ; get firstsampleagainin b

52 move a,xl y:(r0)+,y0 ; sample slope to xl for multiply

53 ; fractionalpart of addressin y0
54 macr xl,y0,b y:(r0),x0 ; interpolated Temp5 in b

55 ; getdecayin x0

56 ; 10. Temp7 <- high-order 12 bits of exponent

57 clr b x:(r0),a b,y0 ; Temp5 in y0 for later multiply
58 ; exponentina

59 ; b <- 0 fortltbelow
60

61 ; 11. add exponent + right-adjusted decay
62 add x0,a

63 ; overflow taken care of automatically by chip, but we do <0 by hand:
64 tlt b,a ; a <- a MAX 0

Figure 11 (continued)

65 move a,y:(r0)+ ; store updated decay, with automatic limiting
66

67 ; 13. Temps <- asymptote + Temp7

68 move x:(r0),x0 ; get asymptote

69 add x0,a y:(r0)+,r5 ; Temps in a

70 ; get sum memoryaddressin rl

71 move a,x0 ; Temps in x0, again with limiting
72

73 ; 14. Temp9 <- Temps * Temp5
74 ; right-shift by 1 bit with sign extension

75 mpy x0,y0,b y:(r5),a ; get old value from sum memory
76 add yl,b x:(r0)+,r6 ; round (the 1 from yl will become

77 ; 0.5aftershift)

78 ; get FMadrfor next oscillator

79 asr b l:(r0)+,x ; get freq for next oscillator

80 ; sum right-shifted high-order 19 bits into sum memory
81 add a,b y:(r6),a ; get mem[FMadr] for next oscillator

82 move b,y:(r5) ; write out to sum memory

83 Jmp start

1 ;; Figure 12. Simple non-interpolating FM sine-wave oscillator.

2 ;; No amplitude envelope, frequency envelope.

3 ;; DRAFT---uncompacted version

4 ;; John Strawn, S Systems
5 ;; 2/9/88

6 ;; Copyright S Systems
7

8 lookup_org set $0 ; y

9 summem_org set $2000 ; y

10 param org set $3000 ; x and y

11 prog_org set $0 ; p
12

13 ; parameters for one oscillator

14 org x:param__org

15 dc summem+2 ; FM input

16 dc $20 ; freq hi

17 dc 0 ; angle hi

18 dc $7fffff ; amplitude

19 org y:param_org
20 dc 0 ; empty

21 de 0 ; freq lo

22 dc 0 ; angle lo

23 dc summem+l ; sum memory address
24

25 org P:prog_org
26 ; setup

27 move %>l,yl ; increment of 1 stays here forever
28 move #>tab len-l,y0 ; table length stays here forever

29 move #>sin_ab,nl
30

31 start move #param_org, r0
32 hop
33

34 ; 1. Temp0 <- mem[FMadr] + freq
35 move x:(r0)+,rl ; get FMadr

36 move l:(r0)+,x ; get freq

37 move y:(rl),a ; get mem[FMadr]

38 add x,a ; Temp0 in a
39

40 ; 4. angle <- angle + Tempo

41 move l:(r0),x ; get angle

42 add x,a ; angle + Temp0 in a
43

44 ; create modulus for address

45 jge posFreq ; if angle now < 0,

46 add y0,a ; jump ahead one table's length
47 add yl,a

48 posFreq and y0,a ; y0 has mask for length of lookup table

49 move a,l: (r0)+ ; store updated angle

50 move al,fl ; integer portion of angle to rl
51

52 ; 8. Temp5 <- sin(angle)

53 move y:(rl+nl),xl ; get sample
54

55 ; 13. Temps <- envelope

56 move x:(r0),x0 ; get amplitude
57 ;

58 ; 14. Temp9 <- Temps * Temp5

59 mpy x0,xl,a ; perform amplitude envelope

60 ; sum into sum memory

61 move y: (r0)+,rl ; get sum memory address

62 hop

63 move y:(rl),xl ; get old value from sum memory

64 add xl,a

65 move a,y:(rl) ; write out to sum memory66

67 jmp start

